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Introduction
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Today's agenda

@ Introduction
o Challenges and examples of applications in physics-based optimization.
@ Foundations of stochastic optimization on Banach spaces
o Basic definitions, most useful tools and results for optimization.
© Optimality conditions
o Constraints on the first and second stage. Adjoint method.
Q Case study
o Analysis of example from PDE-constrained optimization under uncertainty.
© Stochastic approximation
o Results in Hilbert spaces, handling of numerical error.
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Today's agenda

© Introduction

o Challenges and examples of applications in physics-based optimization.
@ Foundations of stochastic optimization on Banach spaces

e Basic definitions, most useful tools and results for optimization.
© Optimality conditions

e Constraints on the first and second stage. Adjoint method.
© Case study

e Analysis of example from PDE-constrained optimization under uncertainty.
© Stochastic approximation

e Results in Hilbert spaces, handling of numerical error.
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Introduction

Stochastic optimization

Abstract decision problem

Prototypical decision problem from stochastic optimization:

min  E[J(u,§)] = [ J(u,&(w)) dP(w).
u€Uyq Q

@ A probability space (Q, F,P) is assumed to be given.

@ U,q C U is the feasible set of deterministic decisions with U Banach space.
@ £: Q — = C R™ is the random (i.e., measurable) vector with support =.

@ J: U x = — R is the parametrized objective function; the superposition
J(u,w) := J(u,&(w)) is the random variable objective function.

Geiersbach (ICSP 2025 Tutorial) 4 /101



Literature

Perturbation
Analysis of
Optimization

Problems

Michael Hinze - Rey

Optimization
with PDE Constraints

£) Springer

Tutorial)

I Convex Analysis

Introduction

and Monotone
Operator Theory
in Hilbert Spaces

@ springer

of Partial Di
Equations

Fredi Tréltzsch

An Introduction
to Computational

Stochastic PDEs

SPRINGER BRIFS 1N MATHEMATICS

Jesiis Martinez-Frutos
Frandisco Periago Esparza

* Optimal Contro
of PDEs under
Uncertainty
An Introduction with
Application to Optimal
Shape Design of
Structures




Introduction

Physics-based optimization

\

Physics-based

optimization

analysis

Geiersbach (ICSP 2025 Tutorial) 6 /101



Introduction Examples of applications

Example optimal control problem

Boundary control problem for the 1D wave equation

Example

@ An oscillating string is fixed at both ends of the interval (0, ¢)
@ The state y is the solution to the wave equation:

state:  yu(x,t) — c2yxx(x, t)=0

boundary conditions:  y(0, t) = u1(t), y(¢, t) = ua(t)
initial conditions:

in (0,£) x (0, T),
for t € (0, 7),

y(x,0) = yo(x), yt(x,0) = y1(x)  for x € (0, ),
where c is the wave speed.

@ Goal: drive the string to rest at a given time T by controls u; and up at x =0 and x = ¢
respectively, i.e., to minimize the cost functional

. N 2
(u,ygrgBXYJ(U7y) ”y”LZ 0,7;(0,£)) Hy( T)HLZ(O £) §||u||L2(077—)2

where 1 > 0 is a regularization parameter.

Simulation: https://caroline.geiersbach.com/icsp/wave. (Credit: Felix Sauer, Weierstrass Institute)
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https://caroline.geiersbach.com/icsp/wave

Introduction Examples of applications

Uncertainty in physics-based optimization (1/2)
@ Material parameters (conductivity, permittivity, elasticity)

Left: Experimental setup.

Right: Simulation of admittivity
(conductivity + permittivity) of tissue
sample using Karhunen-Loéve expansion.

bk o R R )
©-age’
0l 20,30 = {{g‘ Left: CC image showing blood smear with

R platelets (purple) and red blood cells (gray).

drstsdmilorn
"i’.o 2 ".‘w ° Right: Numerical simulation using randomly
i" .*‘ generated circles with periodic boundary.
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Introduction Examples of applications

Uncertainty in physics-based optimization (2/2)

@ Boundary conditions (current density, forcing)

N

\ Figure showing cantilever attached to wall on left-hand
side and subjected to different scenarios of forces on
the lower boundary.

B —— Conti et al. Stochastic dominance constraints in elastic shape optimization (2016).

AN A A

@ Manufacturing irregularites (random boundary)

wing

T ey reons

— Left: Graphic of airfoil. o
e Right: Simulation with randomly :,u:
iy perturbed boundaries. oo

e x

Left: CC; Right: Liu et al. Quantification of airfoil geometry-induced aerodynamic uncertainties-comparison of approaches (2017).
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Introduction Examples of applications

Application in control of stationary heat source under uncertainty

L B

. 1 o -
(wy)eUxy 2 [”y yd”U] + 2HUHU

st. — V- (a(x,w)Vy(x,w)) = u(x), in D as.,

y(X7w) = 07 in 9D a.s.

y ... random state (temperature),
u... deterministic control (optimization variable). Realization of temperature y(-, w) on domain D.
v

Interpretation as convex stochastic optimization problem:
@ Definition of linear control-to-state map S(u,w) = y(-,w) € Y using PDE theory.
@ Objective u — %E [||S(u, )= yd||%}] + 5llull?, depends only on u.

@ U, Y are Banach spaces.

as. = almost surely with respect to P.
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Introduction Examples of applications

Variants of problem from previous slide

1 T
min -R — Yd 21+ Zlu
R L [lly = vall}] 5 lully

st. — V- (a(x, w)Vy(x,w))+y> (x) = u(x), in D as.,

7]
—y(x,w): g(x,w), indD as.
on

Examples of popular variants in the literature:
@ Additional constraints (control or state constraints)
@ Risk measures (e.g. AVOR)

@ Nonlinearities, other boundary conditions
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Introduction Examples of applications

Application in gas markets

Subproblem of an N-player noncooperative game:
@ Agent i makes decisions u; = (p}",p;?”t, q}", q;?”t) on boundary nodes to minimize loss, while
simultaneously satisfying operational constraints.

@ System is driven by the collective decisions u = (u,-),’.\’:l of all agents.

@ Price 7 depends on decisions of all agents.

T
max E |:/ ™ (t, qOUt(t)’ ) q?Ut(t) — C(t)q;n(t) dt:| [Maximize profit]
0

2 . P
LA O _ _A w)c? quwlgw|  Agsina o [PDE describing gas transport]
Bt BOx 2dA P 2

boundary conditions depending on (uy, . . . , up),

pwlt x) < B,
9 < qu(t.x) <3 inf0, T] x Das.

[State constraints]
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Introduction Examples of applications

Theoretical questions (1/2)

And potential difficulties in infinite dimensions

Problem

urglijn E[J(u, )] = / J(u,¢(w)) dP(w).
ad Q

@ Existence of solutions

Usual argument:
o Let j* be optimal value (assumed to be attainable). Choose minimizing sequence (u") with
limn— oo E[J(u", )] = j*
o Show (u") bounded =- there exists a convergent subsequence (u"%) such that u™ — @.
1 only true in finite dimensions.
o Use continuity to conclude that E[J(T, £)] = limy_, oo E[J(u", §)] = j*; feasibility of & using
closedness of U.,q.

v

@ Uniqueness of solutions

With strict convexity (easily transferable to infinite dimensions). J
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Theoretical questions (2/2)

And potential difficulties in infinite dimensions

© Optimality conditions (constrained problems)

Existence of Lagrange multipliers with (e.g. LI, Slater) constraint qualification.
(CQs generally not transferable to infinite dimensions; derivative needs generalization.)
Q Algorithms

Convergence of methods, e.g. using stochastic gradient:
Ul =" — £,G(u",€"),  G(u",€") = V,E[G(u",£)].

(Generally no explicit formula for G; need for discretization.)
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Two-norm discrepancy (1/2)

@ The two-norm discrepancy is a phenomenon in optimal control in infinite dimensions due to
fact that not all norms are equivalent. 1

@ Typical situation: second-order derivative is coercive in weaker norm than where it is
(twice) continuously differentiable (— next slide).

@ Convergence of optimization algorithms in this setting need to handle this difficulty.

1Casas. Tréltzsch. Second order analysis for optimal control improving results from abstract theory (2012).
loffe. Necessary and sufficient conditions for a local minimum. 3: Second order conditions and augmented duality (1979).
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Two-norm discrepancy (2/2)

Example ()
1
min  J(x) = sin(x(t)) dt.
x€12(0,1) 0
Formally, J" (X)v? = — f sin(x(t))v3(t) dt = ||v||L2 01 3t global solution x(t) = —7.

Other global solutions:

_z if t€[0,1— €]
= 2’ | ’ ’
xe(t) {327r7 ifte(l—ec ] Ve € (0,1).

= infinitely many global solutions in L2-neighborhood of X.

Problem: J is not C? in L?(0,1) but rather L>°(0,1); but J”(X)v? > c||v||?s not valid.

2Casas, Troltzsch. Second order analysis for optimal control improving results from abstract theory (2012).
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Introduction Examples of applications

Mesh dependence (1/2)

@ In numerical simulations, infinite-dimensional problems without a closed-form solution need
to be discretized.

@ “Mesh independence” in methods refers to the property that convergence behavior should
be invariant w.r.t. increasingly finer discretizations.

Two different meshes used in
finite element method.

o
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@
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@
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@ Mesh dependence can be observed, for example, if the inner product used for the discretized
gradient is inconsistent with the correct inner product in the functional-analytic setting.

Tutorial) 17 / 101




Mesh dependence (2/2)
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Left: Residual as a function of iteration number with mesh independence; Right: with mesh dependence.
From C. Rupprecht. Projection type methods in Banach space with application in topology optimization,
PhD thesis, 2016.
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Foundations of stochastic optimization on Banach spaces
1
Today's agenda

@ Introduction
e Challenges and examples of applications in physics-based optimization.
©® Foundations of stochastic optimization on Banach spaces
e Basic definitions, most useful tools and results for optimization.
© Optimality conditions
e Constraints on the first and second stage. Adjoint method.
© Case study
e Analysis of example from PDE-constrained optimization under uncertainty.
© Stochastic approximation
e Results in Hilbert spaces, handling of numerical error.
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Foundations of stochastic optimization on Banach spaces Banach spaces

Banach space

A (real) Banach space (X, ||-||x) is a complete normed space. J

Example
@ L[P(D) = {Lebesgue-m.b. u: D — R | fD |u(x)]P dx < oo}/ ~, p € [1,00), D C R%.
0 LP(Q)={Fmb u:Q—=R| fﬂ Ju(w)]P dp(w) < oo}/ ~, p € [1, 0), measure space (2, F, 11).
© L7°(Q) = {F-mb. u: Q@ = R | esssup,cql|u(w)] < oo}/~.
@ WH*P(D) = {u € LP(D) | with weak derivatives’ D*u € LP(D) for |a| < k}.
@ C(D) = {u: D — R | uis continuous} with D C R? closed and bounded (Ilullepy = supcep [u(x)1).

@ Hilbert space (H, (-, -)n) with norm |Jully == +/(u, u)y.

@ Space L(X,Y) of all bounded linear operators from X to Y (Banach spaces).

3pay — v € L1 (D) is the weak derivative of u € L1 (D) if
loc loc

f vgpdx:(q)\alf uD® g dx for all p€C° (D).
D D
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Foundations of stochastic optimization on Banach spaces Banach spaces

Notions that carry over from finite dimensions

@ Definitions of epi j, lev<, j, argmin j for j: X — RU {oo}.
@ C C X is convex if u,v € C implies
Au+(1—X)vecC (VAe][o,1]).
@ j: X - RU{oo} p-strongly convex (p > 0) or convex (u=0) on C C X if

P2 2 4 0w (1 )0 <A@+ (1= i) (Vv e € and A€ 0,1))

A nonconvex set.
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Foundations of stochastic optimization on Banach spaces Banach spaces

Dual space

The topological dual space of Banach space X is defined by X* := £(X,R) with norm

[X*[lx=:=sup {x"(x) =: (x",x)x=x}.
Ixlix=1

Example (Dual space of L)

LP(Q)* can be identified with L, (£2) with % + % =1, p€[l,00), via

1

(", u) 42y 12 = / u(w)v(w) du(w),  u€ Lh,v e LY, u" € (LB)*.
Q

Warning: LL(Q) is only a subspace of L7°(2)*!

Example (Bidual)

The topological bidual space is the dual of the dual space X*; i.e., it is defined by
X** = L(X*,R). X can be identified with a closed subspace of X** via

(xX**, x*)y = (x*,x) Vx* e X*.
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Foundations of stochastic optimization on Banach spaces Banach spaces

Riesz representation theorem

Theorem (Riesz representation for Hilbert space H)
H* = H, i.e., for every u* € H* there exists a unique v € H such that
(' uyps y = (v,u)y YueH, |u*[lpe =[v|n- (1)

Conversely, for every v € H, the linear functional u* defined by (1) is in H*.

Consequence: Hilbert spaces are reflexive. *

#A Banach space X is called reflexive if X D x — (-, x) yx x € X™* is surjective, i.e.,
s

vx** e x** ax e x: (x**,x*)xx*’x* = <X*’X>X*,X vx* e x*.

bach (ICSP

Tutorial) 22 / 101



Foundations of stochastic optimization on Banach spaces | Banach spaces

Derivatives, gradients

A function F: O C X — Y (O # 0 open and X, Y Banach spaces) is Gateaux differentiable if
the limit F " F
t —
dF(x,h) = lim Flxtth) —F) _
t—0t t

exists for all h € X and DF(x): X 5 h— dF(x, h) € Y is bounded and linear, i.e.,
DF(x) € L(X,Y).

It is Fréchet differentiable if it also holds that
IF(x 4+ h) — F(x) — DF(x)h|ly = o(||hllx) for ||hllx — O.

Special case for j: X — R, X Hilbert space: the gradient Vj: X — X is the Riesz representation
of Dj, i.e.,
(Vj(x),v)x = (Dj(x),v)x= x VveX.
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Foundations of stochastic optimization on Banach spaces Banach spaces
Separability

A Banach space X is separable if it contains a countable dense subset, meaning there exists
Y ={xi € X | i € N} C X such that

Vx € XVe>03yeVY: |x—ylx<e

Example

@ C(D) with D C R closed and bounded.
(Polynomials with rational coefficients are dense by WeierstraB's approximation theorem.)

e LP(D), WKP(D), p € [1,00), D C RY.
@ X is separable if X* is; (norm)-closed subspaces of a separable X are separable.

Not separable: L>°(D), Wk:>(D)!
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Foundations of stochastic optimization on Banach spaces Banach spaces

Strong, weak, weak* topologies

Topologies of interest on Banach space (X, ||-||) with (-,-) = (-, -)x* x:

@ Strong topology 7s (generated on X by norm).
X, strongly converges to X (x, — X) if
[[xa — X|| = 0.
@ Weak topology Ty (coarsest one on X so (x*,-): X — R continuous Vx* € X™).
x, weakly converges to X (x, — X) if
(X", x0) — (X", %) Vx" € X*.
@ Weak™ topology 7+ (coarsest one on X* so (-, x): X* — R continuous ¥x € X).
x, weakly” converges to X* (x; —* X™)if

(xp o x) = (X", x) Vx € X.

Hierarchy: 7, C 17w C 7s.

Closedness, lower semicontinuity, and compactness need to be qualified w.r.t. topology! J

Notation: C ... closure of set C w.r.t. topology T

T-Isc ... x,—7 x implies liminf,_, o j(xn) > j(x).
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Foundations of stochastic optimization on Banach spaces Banach spaces

Notions defined with respect to the dual pairing

Convex conjugate: Normal cone:
JE(x*) = supxex{<x*,x) —j(x)}. Ne(xo) :i={y € X* | (y,x —x0) <0Vx € C}.
J Subdifferential:

dj(x0) = {g € X" | j(x) > j(x0) + (g, x — x0) ¥x € X}.
/»Lm: (é'x—xﬁ LN
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Foundations of stochastic optimization on Banach spaces Banach spaces

Compactness

Fact: closed and bounded sets are not compact in infinite dimensions.

Remedy: work with weaker topologies.

Theorem (Banach—Alaoglu)

Closed unit ball of X* is weakly* compact.

v
Corollary
Closed unit ball of reflexive X is weakly compact.

v
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Foundations of stochastic optimization on Banach spaces Banach spaces

Topological minimization theorem

Theorem

Let (X, T) be a topological space and assume j: X — RU {oo} is T-lower semicontinuous and
such that lev.j is T-compact. Then, infycx j(x) > —oo and there exists some x € X such that

J(x) <j(x) vxeX.

Proof. See Theorem 3.2.2 5.

5Attouch, Buttazzo, Michaille. Variational Analysis in Sobolev and BV Spaces (2014).
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Foundations of stochastic optimization on Banach spaces Banach spaces
Choice of topology

Continuity

—‘Compactnéss

Choice of topology requires give-and-take: if 7 is stronger than 7, then

T T1 T T2
leva T1-compact = levqj Tp-compact

but
j  m-lsc = j m-lsc.
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Foundations of stochastic optimization on Banach spaces Banach spaces

Convexity, closedness, and lower semicontinuity

Proposition

(Strongly) closed convex subsets of X are weakly sequentially closed.

Corollary
Any continuous convex functional j: X — R is weakly lower semicontinous (Isc), i.e.,

xp—x = liminfj(xp) > j(x).
n—oo

Proof. Use j 7-Isc < epij 7-closed << lev,j 7-closed (a € R).
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Foundations of stochastic optimization on Banach spaces Banach spaces

Operators

A compact operator A € L(X, Y) maps bounded sets to relatively bounded sets and has the
property that

X3xn—x = Axp—> Ax €Y (weak-to-strong continuity).

Example (Compactness via Sobolev embedding theorem)

Let D C R? open bounded with Lipschitz boundary ©.
@ The embedding ¢: Wk:P1(D) — Wk2:P2(D) is continuous and compact if

d d
ki — — > ky— — and ki > ko.
P1 P2

@ The embedding ¢t: W*P(D) — C**(D) is continuous and compact if

d
k——>0+a.
p

Smeaning boundary can be represented as the graph of a Lipschitz continuous function.
Geiersbach (ICSP 2025 Tutorial) 31/ 101



Foundations of stochastic optimization on Banach spaces Banach spaces

Dual operator

Given an operator A € £(X, Y), the dual operator A* € L(Y™*, X*) is defined by
(A*u, v)x» x = (U, Av)y=y Yu € Y* Vv e X.
v
Theorem (Schauder)
A€ L(X,Y) is compact << A* € L(Y™*,X*) is compact.
v
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Foundations of stochastic optimization on Banach spaces | Vector-valued random variables

Now let's mix in some stochasticity....

From now on let (Q, F,P) denote a complete probability space.

How about measurability in co-dimensions?
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Foundations of stochastic optimization on Banach spaces Vector-valued random variables

Vector-valued mappings

Banach space (X, ||-||) with (-,-) := (-, -)x= x-

A vector-valued mapping x: Q — X is said to be

@ strongly measurable, if there exists a sequence of P-simple functions 7 {x,} such that
[|xn — x|| = 0 a.s. (P-a.e.)

@ weakly measurable, if w — (x*, x(w)) is measurable for all x* € X*.
A mapping x*: Q — X* is said to be

@ weakly” measurable, if w — (x*(w), x) is measurable for all x € X.

Theorem (Pettis measurability)

x strongly measurable < x separably-valued and weakly measurable.

Tthere exist x; € X, Fj € F (j=1,. .., N) such that
(w)= Z XjlF (W), wea.
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Foundations of stochastic optimization on Banach spaces | Vector-valued random variables

Bochner space and its dual

The Bochner space L{(©, X) is the set of all (equivalence classes of) strongly measurable
x: Q — X having finite norm given by

xll oo v i UalX@I% dB@NYP, 1< p <oc,
20 ess supycqllx(@) lx. p=cc.

The limit of the integrals of P-simple functions x, gives the Bochner integral

E[x] := / x(w) dP(w) = nli)moo/x,,(w) dP(w) € X.
Q Q

Theorem

Suppose X is reflexive or X* is separable. Then for all 1 < p < co, we have the isometric
isomorphism

* * 1

=il

Q|+~

Proof. See, e.g., Section 1.3 in 8

8Hytonen et al. Analysis in Banach spaces (2016).



Foundations of stochastic optimization on Banach spaces | Vector-valued random variables

Implicit measurability theorem
A helpful result for showing the measurability of feasible points:

Theorem (Filippov)

Let F: X x Q — Y be a Carathéodory mapping, and suppose C(w) C X and D(w) C Y are
closed sets that depend measurably on w. Then the set

E={weQ|3xe C(w) suchthat F(x,w)€ D(w)}
is measurable, and there exists a measurable function x: E — X such that

x(w) € C(w) and F(x(w),w) € D(w) Vw € E.

Proof. See Section 8.1 9 for the proof and other measurability properties.

Professor: "The answer can
be found in the book"
The boo k:

n gp " They are obviousl,

chOIc = Y sty ,72,5, aowi. ly

e s casy 10 see er;‘e" they can casily| be

Do neonn o 7€, Obyigyg e
It is obvious that 11 b which con &2
'k';' & — i) then rmr hm“mmh ously . i M,.,‘a‘

o diffemples, identify th 0. O pandom Vet

9Aubin, Frankowska. Set-valued analysis (1990).
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Foundations of stochastic optimization on Banach spaces Vector-valued random variables

Random linear operators

A random linear operator A: Q — L(Y, W) is called strongly measurable if for all y € Y,
w +— A(w)y is strongly measurable.

Theorem (Hans 10)

Let A: Q — L(Y,W). Then
@ A(w) is invertible a.s. if and only if ran(A*(w)) = Y* a.s.
o if A(w) is invertible a.s., then A*(w) is invertible and (A*(w))~! = (A~} (w))*,

@ if any of the operators A(w), A~1(w), A*(w), (A~1(w))* is strongly measurable, then they
all are.

®Hans. Inverse and adjoint transforms of linear bounded random transforms (1957).
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Foundations of stochastic optimization on Banach spaces | Vector-valued random variables

Derivative of expectation

Lemma

Let J: X x Q — R. Suppose
Q j(v) =E[J(v,")] is well-defined and finite-valued for all v € O C X (O open),
@Q J. = J(:,w) is a.s. Fréchet differentiable at x € O,

© there exists a positive random variable C € LL(Q) such that for all v € O and almost every
w € Q,

D (V)llx+ < C(w).
Then j is Fréchet differentiable at u and
Dj(x) = E[DJw (x)]-

Proof. See, e.g, Lemma C.3 in 1.

11G., Scarinci. Stochastic proximal gradient methods for nonconvex problems in Hilbert spaces (2021).



Today's agenda

@ Introduction
e Challenges and examples of applications in physics-based optimization.
@ Foundations of stochastic optimization on Banach spaces
e Basic definitions, most useful tools and results for optimization.
© Optimality conditions
o Constraints on the first and second stage. Adjoint method.
© Case study
e Analysis of example from PDE-constrained optimization under uncertainty.
© Stochastic approximation
e Results in Hilbert spaces, handling of numerical error.
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Optimality conditions

Two-stage problems

Two-stage (“recourse”) problem from stochastic programming (on Banach spaces U, Y):

min  Ji(u)+E
uelUy

min J2(u,y,~):| st. y€ Ya(u,w) as.
YEY

Sequence of events:

u — w — y
. v
first-stage decision random event

second-stage decision
(control) (state)

Interchangeability principle (for J> normal integrand 12):

min E[J2<u,y(~),~)1=E[ming(u,y,~)]
y()ELR(Q,Y) yey

12 eaning (epi Jp)(w) == {(u,y, @) € U X Y X R | Jp(u,y, w) < a} is closed-valued and measurable.
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Optimality conditions

Recourse structures in stochastic programming

Definition (Recourse structures)

The problem

min  Ji(u)+E
u€ Uy

min Jg(u,y,~):| st. y € Yaa(u,w) as.
yYey

is said to satisfy the assumption of
@ complete recourse, if for every u there exists a feasible y(w) P-a.e. w;
o relatively complete recourse, if for every feasible u there exists a feasible y(w) P-a.e. w.

@ ... other notions (fixed, simple) not used here...

Relevance: special role in optimality conditions (two-stage problems).
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Optimality conditions

Optimality conditions for constrained problem

Deterministic setting

Theorem

Let U,y C U be convex and j be Gateaux differentiable on an open set covering U,q. Then a
necessary condition for T € U,qg to be a solution to min,cy,, j(u) is

dj(a)(v—1u) >0 Vv € Uy (2)

In case j is convex, (2) is a sufficient condition for optimality of .

Proof. Necessity: For any v € U,q and A € (0,1],
v(\) =0+ Xv —1) € Uyg.
Since @ is optimal, j(v(X)) > j(@), and also

U0 — (@) 2 0.

Taking the limit as A — 0, we obtain (2).

Sufficiency: follows from j(v) — j(@) > dj(a)(v — ).

Geiersbach (ICSP 2025 Tutorial) 41 / 101



Optimality conditions

Problems with reducible objective

Framework for equality constraints

min J1(u) + E[h(u,y(-), )]
(0.y)€Uag X LB(R,Y)

sit. e(u,y(w),w)=0 as.

@ Control problems are often modeled so that a control-to-state operator S: U X Q — Y is
well-defined (e.g., through PDE theory).

@ Problem can be reduced to single-stage form
min - {j(u) = Ji(v) + E[h(u, S(u, ), )]}
u€Uy
@ For optimality conditions, we need Dj(u) and therefore also the derivative D,S(u, w)

~ apply implicit function theorem.

Notation: J2,w(u7 y(w)) = J2(u,y(w),w), Sw(u) = s(uyw)r e, (u,y(w)) = e(u7}/(w)7w)'
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Optimality conditions

Implicit function theorem

Theorem (IFT)

Let U,Y,Z be Banach spaces, e: O — Z (open O C U X Y') continuously Fréchet differentiable,
(a,y) € O such that e(,y) = 0 and Dye(u,y) € L(Y,Z) has a bounded inverse.

Then there exists an open neighborhood Ny(t) X Ny(y) C O of (i, y) and a unique continuous
function S: Ny(@) — Y such that

Q s5(0) =y,
@ For all u € Ny(u), there exists exactly one y € Ny(y) with e(u,y) =0, namely y = S(u).
Moreover, S: Ny(u) — Y is continuously Fréchet differentiable with
DS(u) = —Dye(u, S(u)) " Dye(u, S(u)).

If e: O — Z is m-times continuously Fréchet differentiable, then so is S: Ny(i) — Y.
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Optimality conditions

Adjoint method
Approach for computing derivative of J,,(u) = Ji(u) + Jo., (U, Su (u1))

@ Chain rule + adjoint operator:
(DI (u), hyy= v
= <DJ1(U)7 h>U*,U + <DU‘J2>W(U7 Sw(”)): h>U*,U + (D}/JZVW(uv SW(U)), Dsw(u)h>Y*yY
= (DJ1(u), by~ u + (Dud2,, (u, Ses (1)), hyyx,u + {(DSw (1)) * Dy Jp ., (u, S (1)), hyy= u-

@ IFT in adjoint form: (DS, (u))* = —(Duew(u, Sw(u)))*Dyew(u, Sw(u))™*.

= DSu(u))"DyJy . (u,50(u)) = —(Duew(u, Sw(u)))* Dyew(u, Sw(u)) ™" Dyto,w(u, Sw(u))

=—pw

@ Derivative:
DJ.,(u) = DJi(u) + Dyda,o (1, S (1)) + Duew (u, Sus (1)) * pos,

where p,, solves the adjoint equation
Dyey(u, Sw(u)) pu = —Dy o o, (u, Sw(u)).

Alternative approach: sensivity method; see section 1.6 in Hinze, Pinnau, Ulbrich, Ulbrich. Optimization with PDE constraints (2009).
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Optimality conditions

Optimality conditions for reducible objective

Summary: necessary optimality conditions for u € U,q to be a solution to

min Ji(u) + E[L(u, y(-), )]
(1,y)EUaa X LE(R,Y)

sit. e(u,y(w),w)=0 as.
given by

(D (T) + E[Dy o,y S (8)) + Due(@y Su(@) Bl v — Bueu >0 Vv € Upg,
where p,, solves the adjoint equation

Dye,, (T, Sw(1))*pu = —Dy o (4, Su(T)).

Note: “DE[J,] = E[DJ,]" needs to be justified above.
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mality cond

Op

Problems without reducible form

Historical development

STOCHASTIC CONVEX PROGRAMMING:
BASIC DUALITY

R. T. ROCKAFELLAR AND R. I-B. WeTs

A dulity theory s developed for stochastc progeams with
convex objective and convex constraints. The problem consists ..

i selecting 1, € R™ and 1, € £(5, %, 7; R") 5o as to satisty the KKT conditions 13

constraints and minimize total expected cost, where o is &

probability measure and the constraints as well as the objective

are functions of the random elements of the problem. Under

the additional restriction that x, and x(s) belong to compact . .

Subsets of R~ and R respectively. i s shown that the problem @ Choice of function space L2° (€2, R").
s equivalent to the more common dynamic formulation for P

ochasic programs with recourse  bu

he type i = s — i proved nd qualta
cxistence of dusl wolatons are derved,

1. Introduction. I this paper we study a two-stage stochastic @ Lagrange multipliers in L} (€2, R"™) under
optimization problem associated with the following heuristic . e
model. First, 4 vector x,in R is chosen subject o the constraints relatively complete recourse condition,

(1.1) xEC, and f.(x)=0, i

o, constraint qualification.

ata cost represented by the expression f(x,). Nextan element s of § is
“observed”, where (5.3, ) is a probability space. Finally, a vector

4s) in R i chosen subject to the constraints ~» convenient for algorithm building!

2 HOEC and fulsx,x()=0, i1,

at a cost fu(s, 1, x:(s)). The problem is to choose x, and the function
x:(+) 50 as to minimize the total expected cost

3 Sutw)* [ fots o ntsotas)

This is a stochastic programming problem with recourse; the function x(+)
soecifies the recourse decision.

13Rockafe|lar, Wets. Stochastic convex progr i Kuhn-Tucker iti (1975), Stochastic convex progr i basic duality (1976),
hastic convex prog ing: relatively recourse and induced ibility (1976), Stochastic convex prog; ing: singular multipliers and
extended duality singular multipliers and duality (1976).
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Optimality conditions

Problems without reducible form

Generalized Rockafellar/Wets framework 14

min {T(u,y) = h(u) + E[L(u,y(-), )]}
(U.Y)EUsg X L2(2,Y)

st. e(u,y(w),w)=0 as., i(uy(w)w)<k0 as

Existence of Lagrange multipliers under constraint qualification (strict feasibility):
0 € intdom v,
with value function of perturbed problem

v(¢) = inf T(usy) + 0k, 4, (U5 ¥),
(W)U LL@,Y) e

where oo = {(u,y) € Uss X LE(R, Y) | e(u, y(w), @) = de(w) a5,
i(u,y(w),w) <k ¢i(w) as.}.
Notation: k <x 0 & —keK.

14G,, Wollner. Optimality conditions for almost sure state constraints (2021). G., Hintermiiller. Moreau—Yosida regularization for almost sure state
constraints (2022). G., Henrion. Optimality conditions with chance constraints (2024).
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Optimality conditions

Choice of function spaces depends on CQ

Fact: for p € [1,00), K C LB(€2) has an empty interior unless Q is finite dimensional.

Example (L2 (0,1) = {f € L2(0,1) | f > 0} has empty interior %)
For P = Lebesgue measure; Q = (0,1):
11— f = 1 is not an interior point of K = L2 (0,1):
fn(@) for
1 [0,1—1)
fg=4b 017w
T " {—1, 1-2.1]
we have ||fy — f|2(0,1) = 0 but f, & K for all n.
1 -— = f ¢int K.
v

Consequence: CQ requires using function spaces with sets having nonempty interiors
(Lg°(R, X), X sufficiently regular).

15Tr6|tzsch. Optimal control of partial differential equations (2009).
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Optimality conditions

Yosida-Hewitt-type decomposition on Lg°(€, X)*
For X separable

Theorem (16)
Every v* € Lp°(Q2, X)* has a unique decomposition
v i =v+4+ v,

where v is absolutely continuous* and v° is singular* relative to PP.

(%) 3 weakly™ measurable x*: Q — X* with ||x*(-)||x+ € Lp(Q) s.t.

v(x) = /(X*(w)vx(‘*’»x*,x dP(w).
Q

(*%) There exist {F,} C F such that P(F) >0
Vn:x|g, =0= (A% x)=0.

If X separable and reflexive, absolutely continuous functionals belong to L¢(Q, X*).

16| offe, Levin. Subdifferentials of convex functions (1972).
Corrected proof in Levin. The Leb ition for i on the vector-function space L;o (1974).
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Optimality conditions

Existence of Lagrange multipliers

Convex problems: conjugate duality a la Rockafellar and Wets:
@ Show saddle points A* := (A%, AF) € (LB(Q, W))* x (Lp(€, R))* of Lagrangian
L(u,y, A*) = j(u,y) + A2 e(u,y,) + (i, y, )
exist (assumption: CQ + bounded feasible set or coercive j).
@ Use Yosida—Hewitt decomposition
A=A+ 22 € LP(QW), AT =X+ X7 € LP(Q,R)*

and argue that singular multipliers A2, A? vanish (with relatively complete recourse).
Generally not satisfied by optimal control problems with state constraints!

Nonconvex problems: existence of Lagrange multipliers with 17

17Zowe, Kurcyusz. Regularity and stability for the mathematical programming problem in Banach spaces (1979).
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Optimality conditions

Problem with purely singular multipliers

Example (18)

Problem:
min —u st Gu,w) =u—w < 0in Q:=[1,2]. 3)
u>0
@ Solution u* = 1.
@ Optimality conditions:
(A", 1(+)) = -1, G(u",w) <0 inQ, AtekKkT, (A", G(u", ) =0.

F, = (1,14 1/n) so that P(F,) — 0 as n — oo for Lebesgue measure P.
Since G(u™,-) < —1/non Q\F,, we have By ,,(G(u™,-)) C L=(Q).
y € L*°(Q) with y = 0 on F,, p, small enough so that p,y € By ,,(G(u", ).

Due to complementarity conditions, we have
(A", G(u™, ") £ pay) = £paX,y) <0 = (\",y) =0 Vy:y=0o0nF,
=X =2 #0 ((3,10) = -1).

Notation: 1(w) =1forallw € Q, K~ ={k* € L=(Q)" | (k*, k) < 0Vk € L=(Q)}.

18Bonnans. Convex and stochastic optimization (2019).
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Today's agenda

@ Introduction
e Challenges and examples of applications in physics-based optimization.
@ Foundations of stochastic optimization on Banach spaces
e Basic definitions, most useful tools and results for optimization.
© Optimality conditions
e Constraints on the first and second stage. Adjoint method.
@ Case study
e Analysis of example from PDE-constrained optimization under uncertainty.
© Stochastic approximation
e Results in Hilbert spaces, handling of numerical error.
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Case study | Model problem

Case study

Optimal control of stationary heat source under uncertainty

1 I
min =E - 21 + Zlul?
wmin SB[y = sallp] + Sl

st. = V- (a(x,w)Vy(x,w)) = u(x) + f(x,w), x€D as,
y(x,w) =0, x € 0D as.

(P)

Theoretical questions:
@ Solvability of random PDE
@ Solvability of optimization problem

@ Optimality conditions

Notation: V - (a(x, w)Vy(x,w)) = 2,11 2 (a(x, w) 2bew)
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Case study

Solution to the random PDE

Lemma

Suppose D C RY is open and bounded with Lipschitz boundary, u, f(-,w) € U := L?(D), and
0 < amin < a(x,w) < amax < 00 Vx € D. Then there exists a unique weak solution
y(-,w) € HY(D) to PDE in (P) that satisfies

/ a(x,w)Vy(x,w) - Vv(x) dx = /(u(x) + f(x,w))v(x) dx Vv € HY(D).
D

D
Moreover, there exists C; > 0 such that

lyCllp oy < Glllullizpy + 11 @)lliz2(p))- (4)
Moreover, if a € L2°(Q, L>°(D)), f € LE(Q, L?(D)), then y € ¥ := LE(Q, H}(D)).

Proof. Existence/uniqueness by Lax—Milgram lemma. Strong measurability by Filippov's
theorem.

Notation: H:(D) := Co=(D) "#1(0) and HY(D) = W'2(D).
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Case study

Definition of control-to-state operator

Lemma justifies writing PDE as operator equation in H=1(D) := (H}(D))*:
A(w)y(w) = B(u + f(w))
with
Aw): Hy(D) = HTY(D)  A(w)y = =V - (a(-,w)Vy),
B: L?(D) - H™Y(D) (compact) embedding.

(Parametrized) control-to-state map

. -1
S: U xQ— Y , (uw)— A (w)B(u+ f(w)).
=12(D) =H}(D)

Linear and continuous in u by (4)!
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Case study ~ Solvability of optimization problem
Case study

Existence of solution

Reduced formulation of problem (P):

! 2
min —E _ 27 4 2
(u,y)EUyxY 2 [Hy y"”U] 2|| Iy

sit. Aw)y(w) = B(u+ f(w))

o1 2 L
min SE [IS(s,) = yally] + F 1l

Proposition

Suppose yy € L?(D), f € L]%,(Q7 L%(D)), and ) # U,q C L?(D) is closed and convex. Then if U,q
is bounded or ;1 > 0, there exists a solution to problem (P).
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Case study Solvability of optimization problem
Case study

Existence of solution

Proof.
o j(u) =3B [|IS(u,") = vall3] + £]lull? bounded below = j* = infycy,, j(u) exists.

@ Take minimizing sequence {up} C U,y with j(un) — j* (bounded by assumption).
° LZ(D) is reflexive, so there exists {un, } and o € U,qg such that u,, — u*.

@ j continuous since u — %HS(u,w) — vall?, + £1lull?, continuous a.s. and

@ j is weakly Isc since it is continuous* and convex = u* solves problem (P).
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Case study Solvability of optimization problem

Case study
Optimality conditions (1/2)

Necessary and sufficient conditions in an optimum z:
(Dj(@), v — Byy= .y >0 Vv € Uy,
Computation using D,S(u,w) = D,A™Y(w)B(u + f(w)) = A~Y(w)B:

(0j@). )+ v = (O, (%E [Is@ ) - vall3] + ‘2—‘uaui) V)
u*,u

1
=/<Du (31501 wlp) .v)  are)+ (Do)
o U*,U u* U

= /(5(57 w) = Yd, DuS(T, w)v) y* y dP(w) + (ub, v)y= u
Q

= /(DUS(E,UJ)*(S(E,UJ) — ya), Viu,u dP(w) + (pi, v)y= y
Q

= /(B* AT (w)(S(T, w) — ya), v)u* u dP(w) + (ui, v)y= y-
—_—
@ =:p(w)

~ Introduction of adjoint variable p(w) allows for numerical computation.
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Case study Solvability of optimization problem

Case study
Optimality conditions (2/2)

Resulting optimality conditions:

(E[B*P()] + pi,v — Byy=,u 20 Vv € U,
A" (W)p(w) =¥(w) —yq as.
AW)7(w) = B(ii — f(w)) ass.

Or more explicitly:

(E[B*P()] + pli,v — T)y=,y 20 Vv € Uy,
—V - (a(x,w)Vp(x,w)) = ¥(x,w) — ya(x) on D x Q, p(x,w) =0o0n 0D x Q,
—V - (a(x,w)Vy(x,w)) = G(x) — f(x,w) on D x Q, y(x,w) =0o0n 8D x Q.

Gradient V(i) = E[p] + pt € L?(D) (application of Riesz representation theorem).
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Case study Solvability of optimization problem

The model problem with almost sure state constraints (irreducible)

(u,y)rgti/r:dxy %E [||y _yd”%j} + %”LIH%J
s.t. — V- (a(x,w)Vy(x,w)) = u(x) + f(x,w), x€D as, (Ps)
y(x,w) =0, x €9D as.,
y(x,w) <a xeD as.

@ Problem (Ps) fits the framework of a two-stage decision problem.

@ More forgiving model: chance-constrained setting

P(y(x,w) <aVxeD)>p, pe(0,1). ,
@ Theoretical challenges (optimality conditions) and .,
numerical methods currently unsatisfactory. .
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Today's agenda

@ Introduction
e Challenges and examples of applications in physics-based optimization.
@ Foundations of stochastic optimization on Banach spaces
e Basic definitions, most useful tools and results for optimization.
© Optimality conditions
e Constraints on the first and second stage. Adjoint method.
© Case study
e Analysis of example from PDE-constrained optimization under uncertainty.
© Stochastic approximation
e Results in Hilbert spaces, handling of numerical error.
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Approximation

Solution of stochastic optimization problems

Strategies for solving stochastic optimization problem

min {j(u) = E[J(u, §)] ::/J(u,{(w)) d]P’(w)} :
Q

uelU

@ For small stochastic dimension: quadrature/other discretization for the integral.

@ Sample average approximation (SAA): take one-time sample (&, ,f’”} and solve

1 m
min  — E J(u, €7
uelU m
i=1
using, e.g., deterministic optimization method.

@ “Stochastic approximation” (SA): dynamically sample while optimizing, e.g., with
stochastic gradient method (SG)

W= " — G, €7, G(u", €M) & V().
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Approximation Historical notes

Inspiration for SA: up-and-down method

Dixon and Mood's “up-and-down” method 1° for finding the root of a function, demonstrated on
an application where the critical height for explosives to detonate is determined experimentally:

RECORD OF A SAMPLE OF SIXTY TESTS

Normalized Number of
Height x's o's
2.0 x 1
1.7 XX x xXx x x x x x 10
1.4 0X0X XXXX00XOXXXOXXXO0OXXO0XXO0X 18 9
1.1 o X00000 0O 000 000 0O 00 X0 2 18
0.8 o o 2

FIGURE 1

19 Dixon and Mood. A method for obtaining and analyzing sensitivity data (1948).
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Approximation Historical notes

Stochastic approximation (origins)

@ Stochastic version by Robbins & Monro 20 for computing the
(unique) root of an equation M(u) = «, for a monotone

function M(u) = ffoooy dH(y|u).

@ M @ lterations of the form

n+1

u"t =u" =t (y" — @),

y"... random variable with CDF H(y|u").

0
o Kiefer & Wolfowitz 2! procedure for maximizing a regression @ —
function M using central-difference approximations:
2n—1 2
s R il i
Cn 0

Convergence in L2 and in probability with proper choice of t,, c,.

20 Robbins, Monro. A stochastic approximation method (1951).
Kiefer, Wolfowitz. Stochastic estimation of the maximum of a regression function (1952).
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Approximation Historical notes

SA in function spaces

Literature:

@ Goldstein. Minimizing noisy functionals in Hilbert space: an extension of the Kiefer—Wolfowitz
procedure (1988).

Yin and Zhu. On H-valued Robbins—Monro processes (1990).
Culioli and Cohen. Decomposition/coordination algorithms in stochastic optimization (1990).
Barty, Roy, and Strugarek. Hilbert-valued perturbed subgradient algorithms (2007).

Bittar, Carpentier, Chancelier. The stochastic auxiliary problem principle in Banach spaces:
measurability and convergence (2022).

For PDE-constrained optimization under uncertainty:

@ Martin, Nobile, (Krumscheid, Tsilifis) (2018, 2019, 2021) oo
@ G. (Pflug, Scarinci, Wollner) (2019, 2020, 2021, 2023)
@ Kouri, Surowiec, Staudigl (2023)
@ Other recent contributions...

2072

a1070

gL T
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Approximation Problem structures

The projection operator

For C C U, the projection operator is defined by the point-to-set mapping 7¢: U =2 C,
u— mc(u) = argmin, ccllu — v/

Projection generally set-valued.

Lemma

If C # 0 is closed and convex, then (1) w¢c: U — C (single-valued).
(2) mc is non-expansive, ie., ||rc(u) — wc(v)|| < ||lu—v] for all u,v.

Proof. Bauschke & Combette, Section 3.2.
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Approximation Problem structures

Problem structures

The structure of the objective function plays a huge role in convergence proofs of iterative
methods.

@ Finite sum: min,cy,, # 2:11 Ji(u)
~~ Special benefit of finite-sum structure: regular sampling of full gradient possible.

@ General (finite or infinite sum): min,cy , E[J(u,§)].
@ Strongly convex, convex, quasiconvex

@ Lipschitz gradient
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Approximation Problem structures

(Strong) convexity for smooth objectives

Lemma

If j: U— R is p-strongly convex and differentiable, then
. . . n
j(u)—j(v)Z(VJ(V),U—V)-‘FEHU—VHZ Yu,v € U. (5)

In the convex and differentiable case, (5) holds with y = 0.

Proof. Convex case: we have
JOu+ (1= A)v) < Nj(u) + (1 = A)j(v)

j(vH(”;V))_j(v) < j(u) = j(v).
Taking limit as A — 0, we obtain (Vj(v),u — v) < j(u) —j(v).

Strongly convex case: first prove that j is strongly convex iff there exists a convex h such that
J(u) = h(u) + & ||u||?. Then, proceed as above.
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Approximation Problem structures

Uniqueness of minimizers in strongly convex case

Lemma
If j is p-strongly convex and U,gq # (0 is closed and convex, then

min j(u
uEUadJ( )

has a unique solution.

Proof. (for differentiable j): optimality of & € U,y gives (Vj(T),v — &) > 0 for all v € Uyq.
Then for two optima uy, U2, we have

e L= - —
0 = j(@) — (@) > Lo - mll.
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Approximation Problem structures

L-smooth functions

A function j: U — R is called L-smooth (L > 0) if it is differentiable and the gradient
Vj: U — U is L-Lipschitz, i.e.,

IVi(u) = Vil < Lllu—v|| Vu,veU.

The set of L-smooth functions is denoted by Ci’l(U).

Lemma

Ifj € C/N(U), then

J(@) <49+ ) u =) + = v o,y e U. (6)

Proof. By the fundamental theorem of calculus,

1
i(u) =j(v)+/ (Vilv + t(u—v)),u—v) dt
0

1
=)+ (Vi(v),u—v) + / (Vi(v + t(u = v)) = Vij(v),u —v) dt.
0
Use Cauchy—Schwarz combined with Lipschitz condition and integrate.
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Approximation Problem structures

L-smoothness and convexity

Lemma

If j: U — R is convex and L-smooth, then it is also cocoercive, i.e.,

%IIVJ(U) = Vi(WII? £ (Vi(v) = Vi(u), v — u). (™)

Proof. Using convexity and L-smoothness,
. , . . . L
() =i(v) £(2) < (Vi(u), u = 2) + (Vi(v), 2 = v) + S|z = vl ()

Minimizing right-hand side w.r.t. z, we get z = v — %(Vj(v) — Vj(u)). Substituting z into (%),
we can verify

J() = () £ (i), u =) = S 1950) = Vi) (+#)

Claim follows by applying (%*) twice (exchanging roles of u and v).
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Approximation | Quasigradient (biased) variants

Projected stochastic gradient (PSG) method

PSG method for solving min,cy,,{j(u) := E[J(u,§)]}:

1 =m0, (- 060N, G €N = Vi)

Notes:
@ Robbins—Monro step-sizes:

o0 o0
tn > 0, E tn = 00, E 2 < co.
n=1 n=1

~ j(u"1) > j(u") possible: technically not a descent method!

@ ¢"is randomly chosen and independent of previous realization ¢1, ..., 671,

Example
With bias (“quasigradient”):

G(u",€") = Vi(u") + 1"+ w"

bias mean 0

@ Single realization: V,J(u",£")
@ Minibatch: Zm" Vud(u", €M)

(oo-dimensional case: discretization needed). ° Minibatch/smgle with additive bias:

o ot Vud(un, €M) + 1"
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Approximation | Quasigradient (biased) variants

Types of probabilistic convergence

Feature: the i.i.d. sequence £" ~ P, n € N, induces a discrete stochastic process {u"} —
probabilistic convergence statements.

L* L Typical for SA: proofs of L2 convergence and
— = — almost sure convergence.
s>r>1
4 @ Convex case: convergence of {u"} to set
a.s. P d of minimizers, convergence of {j(u")}.

— > — = o

Figure: Relationship between convergence @ Nonconvex case: convergence of
in LP, almost sure (a.s.), probability (p), stationarity measure, convergence of
and distribution (d). {i(u™)}.
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Approximation | Quasigradient (biased) variants

Nonconvergence with constant step-sizes

Example

Let J(u,&) := (u+&)? = VuJ(u, &) =2(u+ &) and € = £1 (with equal probability). The
minimizer of

E[J(u,€)] = 3((u+1)* + (v~ 1))
isu=0.
J(u,1) = (u+1)2

Suppose t, = a > 0 is constant. )
i(u) = E[J(u, §)]

We prove: [u”| <& = |u"]| > ¢ fore < 9.
« J(u,—1) = (u—1)2

Case £ =—1: u"™l=u"—av,J(u", —1)
> —(1-2a)+2a>ce.

Area of oscillation
Case ¢ = 1 : Analogous argument. Thus u” /4 0.

@ Example explains why Armijo backtracking fails; variance from stochastic gradient needs to
be damped! Two basic strategies: increase batch sizes and/or use decreasing step-sizes.

Python script: https://nbviewer.org/url/caroline.geiersbach.com/PSGD.ipynb
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Approximation | Quasigradient (biased) variants

Assumptions for convergence

Constraint set: U,q # 0 is closed and convex.
Convexity, smoothness, boundedness of expectation.
Measurability: {u"} and {r"} are F,-measurable. 2

Bias decays fast enough: Z tollr" ||Loo )y < oo and sup,||r" ||Loo (@) < oo are satisfied.

Growth condition: There exist My, My > 0 such that E[||G(u, ¢)||?] < M1 + Ma||ul|? for all
u € Uy.

22Measurability can be argued if G and j are continuous and U is separable.
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Approximation | Quasigradient (biased) variants

Almost sure convergence for convex problems

Theorem (Convergence for convex j)
Under assumptions,
0 (" he mini
j(u™)} converges a.s. to the minimum,
© {u"} weakly converges a.s. to some minimizer,

© Strongly convex case: {u"} converges strongly a.s. to the unique minimizer.

u" converges “weakly a.s” to U if P({w € Q| limpsoo{v,u") = {(v,0) Vv e U}) =1
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Approximation | Quasigradient (biased) variants

Notes about proof technique

The natural filtration is denoted by 7, = o({¢},...,£"1}), n € N. 2 The conditional
expectation [£[u|F ;] of a random vector u is a random vector such that
/E[u|]-'n](w) dP(w) = / u(w) dP(w) VA € F.
A A
Thus, if u is F,-measurable, we have E[u|F,] = u a.s. Also, since Q € F, E[E[u|F,]] = E[u]
(law of total expectation).
v
Lemma (Robbins—Siegmund 24)
Suppose {Fn} is an increasing sequence of o-algebras and vi, an, bn, cn are Fp-measurable
nonnegative random variables. If
oo o0
Elvots| ol Sva(l+an) + bo—coy 3 an<oo, Y bn<oo,
n=1 n=1
then {va} converges and Z:i1 cn < 00 a.s.
v

230({51, ..., €™}) is the smallest o-algebra such that £i is measurable for all i.
2 Robbins, Siegmund. A convergence theorem for non negative almost supermartingales and some applications (1971).
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Approximation | Quasigradient (biased) variants

Efficiency estimates - strongly convex case

Rules for bias and step-sizes for u-strongly convex objective:

K - 0
n—l—y7 "_n—l—l/7

where 6 > 1/(2u), and v > 20k/(2p0 — 1) — 1, and k > 0.

||rn||L]l$°(Q) <

Efficiency estimates:

E[l|u” — @] < niw where p = p(v, 1,0, [[u — @], &, My, My).

If additionally j € C}* and V(@) = 0, then

Lp

B @1 < 5 s

~~ Same order of convergence as for bounded U,q4, unbiased case!
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Approximation | Quasigradient (biased) variants

Poor convergence in convex case

Example (?°)
@ Poor choice of step size: Consider j(u) = %0”2' U.g = [-1,1], G(u, &) = Vj(u). Suppose

that we choose 8 = 1 (here we have u = %) Then,

n—1 n—1 n—1
=103 don(trg=g) p e -2
u" = — — ) =expg — n exp{ — _—
5s 3 5s— 1 s 5s — 1
s=1 s=1

s=1

n—1
1
> exp {— <0.25 +/ 5T—1 dt) } > 0,8,,*1/5.
1

At iterate n = 10°, the iterated solution is greater than 0.015 (the solution is
= Vij(u),

]
Il
=

=

@ Convex (not strongly convex) case: Consider j(u) = u*, U,g = [-1,1], G(u,€)
0 1
th = 7, O<w < v Then,
n> & .
T /1+320(u?)2(1 + In(n + 1))
v

Remedy: iterate averaging 20
approach to ic programming (2009).

2‘:—’Nemirovski. Juditsky, Lan, Shapiro. Robust stochastic approxir i k
% Polyak and Juditsky. Acceleration of stochastic approximation by averaging (1992).
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Approximation | Quasigradient (biased) variants

Efficiency estimates with iterate averaging

Iterate averaging: run PSG with larger steps; compute the running average of the iterates:
N N
~N __ n .
u;” = E YnU", Yn = tn/( § tl)'
n=i =i

Rules for bias and step-sizes (U,gq bounded):

N
lr"llge @) 9D, )
— x1, th=—, 6 > 0,D,q := max ||[u” — ul|, and M = M.
vn v Mn uEU,q

n=i

Efficiency estimate for i = [a/N] for some a € (0,1):
i~ . P
ELj(@) — j(u)] < Un P POM D @)

Note: for unbounded U,q, possible to show that convergence is nearly O(1/v/N).
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Approximation | Quasigradient (biased) variants

Finite element method (FEM) in 2D

Weak formulation of model problem:

Find y = y(£) € V := H}(D) such that

/ a(x,&)Vy(x) - Vv(x) dx = / u(x)v(x) dx VveV.
D

D

Finite element approximation:

Triangulate D into elements 7, = {T;}.
Choose basis {¢;} C V}, C V.

Stiffness matrix:

Ake = Z / Zag81¢k8j¢g dx.
T ..

TEThH i

@ Load vector: [} = fD uj dx. Triangulation 7} showing
. - triangles (T;)i=1,...,50 defined
Solve: AY = /. by edges and nodes.
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Approximation | Quasigradient (biased) variants

Discretization

State/adjoint equations - piecewise linear finite elements:

Yy :={v € HY(D) | v|r € P1(T) for all T € Tp},
Y = Y, N HY(D).

Controls - discretization using piecewise constant finite elements:

Up:={u € L’(D)| v|r € Po(T) for all T € Tp}, Usa.p = Up N Usg.

Figure: Example up € Uag,p (left) and y, € Y,? (right).
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Approximation | Quasigradient (biased) variants

Discretization of problem and stochastic gradient

The (spatially) discretized version of the model problem:

1 H 2
in 5 [ =l + Sl

(Ph)
s.t. / Iha(¢)Vy - Vv dx = (up, Vh>L2(D) Yvy, € Y,?.
D

I ... interpolation into element wise constant or linear finite elements.

Stochastic gradient with bias (numerical error):
Vudn(un, &) = pup + Prpn(§),
where p;,(£) € Y solves the PDE

/ Iha(ﬁ)Vph(f) - Vv, dx = (yh(ﬁ) — Yd, Vh)LZ(D) Vv, € Y,?.
D

Pp: U — Up... L?-projection, defined for v € L?(D) by Ph(v)‘_r: % fT v dx.
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Approximation | Quasigradient (biased) variants

Error in stochastic gradient

Error in the stochastic gradient can be split as follows:

Vij(un) = pup + Prp(€7) +E[p"(€)] — p"(€") + p"(£") — Prpy(£")

=:VyJp(up,") =w" ="

Sketch of estimate for K, = ||p"(&) — P,,p,:(g)||LgO(E)U), U = [*(D):
1" (&) = Pupn(&)llu < [1Pap4(E) — Pup"(€)llu + 1" (€) — Prp"(&)llu
< lpp(€) — P"(O)llu + ch||VP"(€)||lu  (Projection + Error for P)

< llep(€) = P"(Ellu + ch(llyallu + llunllu) ~ (Stability of p(&) and y(&))

IN

ch™n:) (HYdHU + Huh||U) + ch(||yd||u + HUhllu) (Aubin-Nitsche trick *')
= Bound for bias: K, < chmin(2s:t,1),

eor a(¢) € Ct(D), 3sp € (0, 1] :forany 0 < s < s, any u € H ~L(D), it holds that [|y(&)
Geiersbach (ICSP 2025 Tutorial)
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Approximation | Quasigradient (biased) variants

Mesh refinement rule

For the strongly convex case, we get with the requirement that K, < nfy the rule
0 c 1/ min(2s,t,1)
th = , hp < . 8
" n+v "= (n —+ 1/) ( )
For the convex case, we get with the requirement ZN Ko 1 the rule
. we g q i V5
1/ min(2s,t,1)
6D, c
th=—2 p< | ———n : 9)
vV Mn ﬁ ++vn—1
v
PSG with mesh refinement for (P})
Initialization: Select h; > 0, u}, € Uag,n
forn=1,2,... do
if h = h, is too large per (8) or (9) then
Refine mesh 771” until h = h, is small enough.
end if
Given new sample £", calculate (y,?,pﬁ) by solving corresponding state, adjoint equations.
uZ'*'l = TI'Uad,h(UZ — t,,()\u,’; + Phpg)).
end for y
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Approximation | Quasigradient (biased) variants

Obtained solutions

5bEHO000 =

E.

control in strongly convex setting (middle) and convex setting

Figure: “Smooth field" (left) with
(right).

5 S28°%RE &

Figure: “Piecewise constant field” (left) with control in strongly convex setting (middle) and
convex setting (right).

Gei

h (ICSP 2025 Tutorial) 84/




780,525

£ 780520

780,510

Objective fin

780,505

780,500

00

50 200
Iterations n

018

0.16

014

012

81072

61077

11072

78046

780.45

780.44

i
i
i
i
i
1

o

100

200
Iterations n

150

£ oaso

Error

el

0.0316

LiCua) - j|
e 0410100

0251
0.01
&
0.00316
0.1
50 100 T30 200 250 300 50 100 150
Iterations n Iterations n
0.308 A
Iy, = allee = 13wy - 31
1670700 25100
0.251
L ool
=
0150
01 0.001

Figure: Smooth random field (top row)
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Appr

Convergence behavior: convex case
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Figure: Smooth random field (top row) and piecewise constant random field (bottom row).

— Reduced convergence rate for piecewise constant a!
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tion

Convergence behavior: convex case

Quasigradient (biased) variants

.... Expected convergence rate can be achieved by choosing a more aggressive mesh
refinement strategy. Here, we chose min(2s,t,1) = 0.5.

Objective function value

1.1580

1.1565

Figure: Piecewise constant random field using variable step-size
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Approximation Beyond convexity

Nonconvex objective

Motivation: in many applications, j is nonconvex (e.g., if u+— S(u,w) is nonlinear). What can
be said about convergence of SA for nonconvex problems?

Catastrophe Without convexity, one can only expect to

converge to stationary points.
~> Need to ensure iterates {u"} are bounded
along with some smoothness assumption on V.

Great

Minimal assumption: objective has L-Lipschitz gradients, so that we have inequality

Jw) < J0) + (Vi) 0 =)+ S la =P Vuv e U (10)
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Approximation Beyond convexity

Assumptions for convergence

SG method for solving unconstrained min,cy{j(u) := E[J(u, §)]}:

oo oo
u™ = 0" — £, G(u", €M), with RM rule:  t, >0, E th = oo, E 2 < oo.
n=1 n=1

Assumptions - SG with bias: G(u",£") = Vj(u") + r" + w"
@ lterates are bounded 8.
@ jc Cz’l is bounded below.
@ Measurability: {u"} and {r"} are F,-measurable.

@ Bias decays fast enough: r" = E[G(u",£")|Fn] — Vj(u") is Fo-measurable for all n and
Z:i1 thrnHL;“(Q) < 00 and sup,||r"[| oo () < oo are satisfied.

@ Growth condition: There exists a function M: U — [0, o), that is bounded on bounded
sets, such that E[||G(u, £)|?] < M(u).

28 B oundedness of iterates can be shown under additional growth conditions on the gradient.
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Approximation Beyond convexity

Almost sure convergence result

Theorem (Convergence for j € Cz"l)

© The sequence {j(u")} converges a.s. & liminf,_,||Vj(u")|| =0 a.s.
@ If F(u) := ||Vj(u)|? satisfies F € C,}’Fl(U), then lim,_ o0 Vj(u") =0 a.s.

Note: No convergence statement for iterates.
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Approximation Beyond convexity

Proof of first claim

Since j € Cz’l and g" = Vj(u") + r" + w",

.0on+1 (19) ron Y] n Lt,% n2
Jw) ) = (Vi) ) + g
Monotonicity of =Vj(u")+rn 5
L i) F] < ) — (i), BRED) + SR E(en 2|
= L™ )Fn] < i(u") = ta(Vi(u"), E[g"|Fnl ) + —FElllg" [ ]

Apply Robbins—Siegmund lemma.
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Approximation Beyond convexity

Proof of second claim

Since F € Cz:,

2
BIE@™) ()l < | ~ta( VF(), Bl ) + 22 Ellgnl 7]
——"

=Vnt1
NN LTV . n n LeM(u" t,21
< | = ta(2(VEi(u™)* Vi(u"), Vi(u") 4 r")| + %
, LEM(um) 22
< 2Lt [ V()| + 2L Mt 2 ) + %

Result follows with following theorem.

Lemma (Quasimartingale convergence theorem)

Suppose {Fn} is an increasing sequence of o-algebras and v, is a F-measurable random
variable. If

sup E[max{0, —v}] < co and ZE[\E[V,,H — vn\]-'n]|] < o0,

n=1

then {v,} converges a.s. to a P-integrable random variable Voo .
v
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Approximation Beyond convexity

Convergence rates?

In the nonconvex case, it's possible to show that if t, is decreasing and
—~ = 00 29 then, almost surely,

&
Zj:l Zi:l &

1
min |[Vj(u)|P=0o =—— | .
A, VO (z;_lt,-)

Poor scaling of the step size in the
nonconvex setting — convergence may be
very slow...

Scaling of
th=0/n"
obtained by intuition and offline tuning.

Figure: Heat death of the universe?

2Satisfied for e.g. ty = 6/n° with 0 > O and s € (0.5, 1].
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Model problem

Optimal control of semilinear elliptic equation under uncertainty

. 1 m
min  SElIY(€) — vallZa oyl + S luliZ o,

uel2(p) 2
st. = V- (a(x,OVy(x) +y(x) + () = u(x), x€D as,
% =0, x € 0D as.

@ Nonlinear control-to-state map u — S(u,w).

@ Good performance with step size t, = 6/n with § = 2/p informed by strongly convex
objective.

9.80:01 099 1 101 10e+00
29e-01 06 08 1 12 14 186400 n
L

Figure: Computed optimal control (left) and state (right) for = 1.
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Convergence behavior

Beyond convexity

1072} L - wingy, Vi) 2 10°F i V)2
10-1 = 107 (e, te) = 107 (e )
1073,
1072
107 10-3
105} 1074 -
1079
1070}
10°6
10°7 10-7 L N 10-8 L L

10° 10! 10°
Iteration n

10°

10
Iteration n

10°

10° 10 10*
Iteration n

Figure: Convergence for u = 1 (left), u = 0.1 (middle), u = 0.01 (right).

Performance outperforms theory ~» nonconvexity is rather harmless for this problem.
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Approximation Beyond convexity

Evidence of mesh independence

Idea: run algorithm on different meshes and compare # of iterations needed until the
(estimated!) residual ?y reaches a tolerance tol.

Hope: # of iterations stays stable — independent of the discretization.

h # triangles | objective function fy | # iterations N until 7y < tol
71e2 800 4.160e~? 191
4.7e2 1800 4.157e~2 295
3.5e72 3200 4.157e~2 233
2.8e2 5000 4.156e—2 257
2.4e2 7200 4.156e~2 271
2.0e~2 9800 4.155e~2 251

Mesh independence test for SA + FEM method showing evidence of mesh independence.
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Approximation Beyond convexity

Example for numerics - with state constraints

Modification of problem (P) to include state constraint “y(-,&) < a”: Moreau—Yosida
regularized problem is

. 1 B Y
u’gb?d EE[HY - deiz(D)] + §||U||ZZ2(D) + 5E[||max(07y - a)||i2(o)]
st V- (a(Vy(x€) = u(x), onDx=,
y(x,€) =0, on 9D x =.
With J(u, &) = 2||y yd|| oyt E||u|| oyt ZImax(0,y — Oc)|| , stochastic gradient can

be computed by:
DuJ(u, €)[] = (y — ya, A~ (€)h) + (pu, h) + (ymax(0,y — ), A"} (£)h)
= (AT"(E)(y — ya) + ymax(0,y — o)) +pu, h).
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Approximation Beyond convexity

Path-following PSG method

Initialization: Select v1, h1 > 0, u} € Usq p.
form=1,2,... do

,T" < Run PSG with mesh refinement with gradient G;’"(u,’,’,g") for m, steps.

Increase vm, choose h = hy, project u"Jrl onto mesh hy.
end for

20000
w500

ax107

15000

3x107 12500

10000
7500

2x107

5000

2500

Figure: Plot of stationarity measure ||G’Y"(u",.£")||i2 (left); infeasibility measure
[[max(0, y" — a)Hiz (middle); sequence of v, (right).

Notes:

@ U,q chosen large enough so that |G (u” 7f”)HLZ(D is a stationarity measure.

@ Variance reduction (increased batch sizes) may improve performance for larger vy.
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Conclusion

Main takeaways

@ Introduction to stochastic optimization on Banach spaces.
@ Optimality conditions in reducible form and challenges in irreducible form.
@ Case study from PDE-constrained optimization under uncertainty.

@ Results in Hilbert-valued stochastic approximation

e It is possible to show almost sure convergence in Hilbert spaces even with (decreasing)
numerical error, unbounded U,q4, and/or nonconvex functions.

@ SA applicable to more involved problems (nonconvexity, nonsmoothness) but further
development is needed!

~~ Many open questions for further research: optimality conditions, models with risk
measures, higher-order and accelerated methods, line search methods for nonconvex
problems, more robust methods for state constraints, convergence of SA for nonconvex
problems in Banach spaces ...
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Conclusion

References

For technical details behind theory/numerics in this lecture, see:

@ SA - convex setting
e G., Pflug. PSGM for convex constrained probs. in Hilbert spaces. SIOPT (2019).
e G., Wollner. SGM with mesh refinement. SISC (2020).

@ SA - nonconvex setting
e G., Scarinci. SPGM for nonconvex probs. in Hilbert space. COAP (2021).
e G., Scarinci. SGM for nonconvex probs. in Hilbert space. JDA (2023).

o Optimality conditions for probabilistic state constraints

e G., Wollner. Optimality conditions for almost sure state constraints. SIOPT (2021).
o G., Hintermiiller. Moreau—Yosida regularization for almost sure state constraints.
ESAIM: COCV (2022).
o G., Henrion. Optimality conditions with chance constraints. Math. Oper.
Res. (2024).

Other recommended reading:

@ Heinkenschloss and Kouri. Optimization problems governed by systems of PDEs with uncertainties (2025).
@ Kouri and Surowiec. Existence and optimality conditions for risk-averse PDE-constrained optimization (2018).
@ Shapiro, Dentcheva, and Ruszczyriski. Lectures on stochastic programming: modeling and theory. (2009).

@ Bottou, Curtis, and Nocedal. Optimization methods for large-scale machine learning (2018).

Cartoon images in this lecture were generated using ChatGPT.
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Conclusion Why does doggo only have three legs?
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