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Introduction

Today’s agenda

1 Introduction
Challenges and examples of applications in physics-based optimization.

2 Foundations of stochastic optimization on Banach spaces
Basic definitions, most useful tools and results for optimization.

3 Optimality conditions
Constraints on the first and second stage. Adjoint method.

4 Case study
Analysis of example from PDE-constrained optimization under uncertainty.

5 Stochastic approximation
Results in Hilbert spaces, handling of numerical error.
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Introduction

Stochastic optimization
Abstract decision problem

Prototypical decision problem from stochastic optimization:

min
u∈Uad

E[J(u, ξ)] =
∫

Ω
J(u, ξ(ω)) dP(ω).

A probability space (Ω,F ,P) is assumed to be given.
Uad ⊂ U is the feasible set of deterministic decisions with U Banach space.
ξ : Ω→ Ξ ⊂ Rm is the random (i.e., measurable) vector with support Ξ.
J : U × Ξ→ R is the parametrized objective function; the superposition
J (u, ω) := J(u, ξ(ω)) is the random variable objective function.
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Literature
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Introduction

Physics-based optimization
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Introduction Examples of applications

Example optimal control problem
Boundary control problem for the 1D wave equation

Example

An oscillating string is fixed at both ends of the interval (0, `).
The state y is the solution to the wave equation:

state: ytt(x , t)− c2yxx (x , t) = 0 in (0, `)× (0,T ),
boundary conditions: y(0, t) = u1(t), y(`, t) = u2(t) for t ∈ (0,T ),

initial conditions: y(x , 0) = y0(x), yt(x , 0) = y1(x) for x ∈ (0, `),

where c is the wave speed.
Goal: drive the string to rest at a given time T by controls u1 and u2 at x = 0 and x = `,
respectively, i.e., to minimize the cost functional

min
(u,y)∈U×Y

J(u, y) =
1
2
‖y‖2L2(0,T ;(0,`)) +

1
2
‖y(·,T )‖2L2(0,`) +

µ

2
‖u‖2L2(0,T )2

where µ > 0 is a regularization parameter.

Simulation: https://caroline.geiersbach.com/icsp/wave. (Credit: Felix Sauer, Weierstrass Institute)

Geiersbach (ICSP 2025 Tutorial) 7 / 101 July 26, 2025

https://caroline.geiersbach.com/icsp/wave


Introduction Examples of applications

Uncertainty in physics-based optimization (1/2)

Material parameters (conductivity, permittivity, elasticity)

Left: Experimental setup.

Right: Simulation of admittivity
(conductivity + permittivity) of tissue
sample using Karhunen-Loève expansion.

Left: Cheney et al. Electrical impedance tomography (1999).

Left: CC image showing blood smear with
platelets (purple) and red blood cells (gray).

Right: Numerical simulation using randomly
generated circles with periodic boundary.
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Introduction Examples of applications

Uncertainty in physics-based optimization (2/2)

Boundary conditions (current density, forcing)

Figure showing cantilever attached to wall on left-hand
side and subjected to different scenarios of forces on
the lower boundary.

Conti et al. Stochastic dominance constraints in elastic shape optimization (2016).

Manufacturing irregularites (random boundary)

Left: Graphic of airfoil.

Right: Simulation with randomly
perturbed boundaries.

Left: CC; Right: Liu et al. Quantification of airfoil geometry-induced aerodynamic uncertainties-comparison of approaches (2017).
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Introduction Examples of applications

Application in control of stationary heat source under uncertainty

min
(u,y)∈U×Y

1
2
E
[
‖y − yd‖2U

]
+
µ

2
‖u‖2U

s.t. −∇ · (a(x , ω)∇y(x , ω)) = u(x), in D a.s.,
y(x , ω) = 0, in ∂D a.s.

y . . . random state (temperature),
u . . . deterministic control (optimization variable). Realization of temperature y(·, ω) on domain D.

Interpretation as convex stochastic optimization problem:

Definition of linear control-to-state map S(u, ω) = y(·, ω) ∈ Y using PDE theory.

Objective u 7→ 1
2E
[
‖S(u, ·)− yd‖2U

]
+ µ

2 ‖u‖
2
U depends only on u.

U,Y are Banach spaces.

a.s. = almost surely with respect to P.
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Introduction Examples of applications

Variants of problem from previous slide

min
(u,y)∈Uad×Yad

1
2
R
[
‖y − yd‖2U

]
+
µ

2
‖u‖2U

s.t. −∇ · (a(x , ω)∇y(x , ω))+y3(x) = u(x), in D a.s.,
∂y
∂n

(x, ω)= g(x, ω), in ∂D a.s.

Examples of popular variants in the literature:
Additional constraints (control or state constraints)
Risk measures (e.g. AV@R)
Nonlinearities, other boundary conditions
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Introduction Examples of applications

Application in gas markets

Subproblem of an N-player noncooperative game:
Agent i makes decisions ui = (pini , pouti , qini , qouti ) on boundary nodes to minimize loss, while
simultaneously satisfying operational constraints.
System is driven by the collective decisions u = (ui )Ni=1 of all agents.
Price π depends on decisions of all agents.

max
ui∈Ui,ad

E

[∫ T

0

π
(
t, qout(t), ·

)
qout
i (t)− c(t)qin

i (t) dt

]
[Maximize profit]

s.t. ∂pω
∂t + c2

A
∂qω
∂x = 0,

∂qω
∂t + A ∂pω

∂x = −λ(ω)c2
2dA

qω|qω|
pω

− Ag sinα
c2

pω,

boundary conditions depending on (u1, . . . , uN ),

 [PDE describing gas transport]

p ≤ pω (t, x) ≤ p,

q ≤ qω (t, x) ≤ q in [0, T ] × D a.s.

}
[State constraints]
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Introduction Examples of applications

Theoretical questions (1/2)
And potential difficulties in infinite dimensions

Problem

min
u∈Uad

E[J(u, ξ)] =
∫

Ω
J(u, ξ(ω)) dP(ω).

1 Existence of solutions

Usual argument:
Let j∗ be optimal value (assumed to be attainable). Choose minimizing sequence (un) with
limn→∞ E[J(un, ξ)] = j∗

Show (un) bounded ⇒ there exists a convergent subsequence (unk ) such that unk → ū.
↑ only true in finite dimensions.

Use continuity to conclude that E[J(ū, ξ)] = limk→∞ E[J(unk , ξ)] = j∗; feasibility of ū using
closedness of Uad.

2 Uniqueness of solutions

With strict convexity (easily transferable to infinite dimensions).
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Introduction Examples of applications

Theoretical questions (2/2)
And potential difficulties in infinite dimensions

3 Optimality conditions (constrained problems)

Existence of Lagrange multipliers with (e.g. LI, Slater) constraint qualification.
(CQs generally not transferable to infinite dimensions; derivative needs generalization.)

4 Algorithms

Convergence of methods, e.g. using stochastic gradient:

un+1 = un − tnG(un, ξn), G(un, ξn) ≈ ∇uE[G(un, ξ)].

(Generally no explicit formula for G; need for discretization.)
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Introduction Examples of applications

Two-norm discrepancy (1/2)

The two-norm discrepancy is a phenomenon in optimal control in infinite dimensions due to
fact that not all norms are equivalent. 1

Typical situation: second-order derivative is coercive in weaker norm than where it is
(twice) continuously differentiable (→ next slide).

Convergence of optimization algorithms in this setting need to handle this difficulty.

1Casas, Tröltzsch. Second order analysis for optimal control problems: improving results expected from abstract theory (2012).
Ioffe. Necessary and sufficient conditions for a local minimum. 3: Second order conditions and augmented duality (1979).
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Introduction Examples of applications

Two-norm discrepancy (2/2)

Example (2)

min
x∈L2(0,1)

J(x) =
∫ 1

0
sin(x(t)) dt.

Formally, J ′′(x̄)v2 = −
∫ 1
0 sin(x̄(t))v2(t) dt = ‖v‖2L2(0,1) at global solution x̄(t) = −π2 .

Other global solutions:

xε(t) =
{
−π2 , if t ∈ [0, 1− ε],
3π
2 , if t ∈ (1− ε, 1]

∀ε ∈ (0, 1).

⇒ infinitely many global solutions in L2-neighborhood of x̄ .

Problem: J is not C2 in L2(0, 1) but rather L∞(0, 1); but J ′′(x̄)v2 ≥ c‖v‖2L∞ not valid.

2Casas, Tröltzsch. Second order analysis for optimal control problems: improving results expected from abstract theory (2012).
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Introduction Examples of applications

Mesh dependence (1/2)

In numerical simulations, infinite-dimensional problems without a closed-form solution need
to be discretized.

“Mesh independence” in methods refers to the property that convergence behavior should
be invariant w.r.t. increasingly finer discretizations.

Two different meshes used in
finite element method.

←− coarse fine −→

Mesh dependence can be observed, for example, if the inner product used for the discretized
gradient is inconsistent with the correct inner product in the functional-analytic setting.
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Introduction Examples of applications

Mesh dependence (2/2)

Left: Residual as a function of iteration number with mesh independence; Right: with mesh dependence.
From C. Rupprecht. Projection type methods in Banach space with application in topology optimization,
PhD thesis, 2016.
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Foundations of stochastic optimization on Banach spaces Banach spaces

Banach space

A (real) Banach space (X , ‖·‖X ) is a complete normed space.

Example

Lp(D) = {Lebesgue-m.b. u : D → R |
∫
D
|u(x)|p dx <∞}/∼, p ∈ [1,∞), D ⊂ Rd .

Lpµ(Ω) = {F-m.b. u : Ω→ R |
∫

Ω
|u(ω)|p dµ(ω) <∞}/∼, p ∈ [1,∞), measure space (Ω,F, µ).

L∞µ (Ω) = {F-m.b. u : Ω→ R | esssupω∈Ω|u(ω)| <∞}/∼.

W k,p(D) = {u ∈ Lp(D) | with weak derivatives3 Dαu ∈ Lp(D) for |α| ≤ k}.

C(D̄) = {u : D̄ → R | u is continuous} with D̄ ⊂ Rd closed and bounded (‖u‖C(D̄) := supx∈D̄ |u(x)|).

Hilbert space (H, (·, ·)H ) with norm ‖u‖H :=
√

(u, u)H .

Space L(X ,Y ) of all bounded linear operators from X to Y (Banach spaces).

3Dαu := v ∈ L1loc(D) is the weak derivative of u ∈ L1loc(D) if∫
D

v ϕ dx = (−1)|α|
∫
D

uDαϕ dx for all ϕ∈C∞c (D).
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Foundations of stochastic optimization on Banach spaces Banach spaces

Notions that carry over from finite dimensions

Definitions of epi j , lev≤α j , argmin j for j : X → R ∪ {∞}.
C ⊂ X is convex if u, v ∈ C implies

λu + (1− λ)v ∈ C (∀λ ∈ [0, 1]).
j : X → R ∪ {∞} µ-strongly convex (µ > 0) or convex (µ = 0) on C ⊂ X if

µ
λ(1− λ)

2
‖u − v‖2 + j(λu + (1− λ)v) ≤ λj(u) + (1− λ)j(v) (∀u, v ∈ C and λ ∈ [0, 1]).

A nonconvex set.
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Foundations of stochastic optimization on Banach spaces Banach spaces

Dual space

The topological dual space of Banach space X is defined by X∗ := L(X,R) with norm

‖x∗‖X∗ := sup
‖x‖X =1

{x∗(x) =: 〈x∗, x〉X∗,X}.

Example (Dual space of Lpµ)

Lpµ(Ω)∗ can be identified with Lqµ(Ω) with 1
p + 1

q = 1, p ∈ [1,∞), via

〈u∗, u〉(Lpµ)∗,Lpµ
:=
∫

Ω
u(ω)v(ω) dµ(ω), u ∈ Lpµ, v ∈ Lqµ, u∗ ∈ (Lpµ)∗.

Warning: L1µ(Ω) is only a subspace of L∞µ (Ω)∗!

Example (Bidual)

The topological bidual space is the dual of the dual space X∗; i.e., it is defined by
X∗∗ := L(X∗,R). X can be identified with a closed subspace of X∗∗ via

〈x∗∗, x∗〉 := 〈x∗, x〉 ∀x∗ ∈ X∗.
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Foundations of stochastic optimization on Banach spaces Banach spaces

Riesz representation theorem

Theorem (Riesz representation for Hilbert space H)

H∗ ∼= H, i.e., for every u∗ ∈ H∗ there exists a unique v ∈ H such that

〈u∗, u〉H∗,H = (v , u)H ∀u ∈ H, ‖u∗‖H∗ = ‖v‖H . (1)

Conversely, for every v ∈ H, the linear functional u∗ defined by (1) is in H∗.

Consequence: Hilbert spaces are reflexive. 4

4A Banach space X is called reflexive if X 3 x 7→ 〈·, x〉X∗,X ∈ X∗∗ is surjective, i.e.,

∀x∗∗ ∈ X∗∗ ∃x ∈ X : 〈x∗∗, x∗〉X∗∗,X∗ = 〈x∗, x〉X∗,X ∀x∗ ∈ X∗.
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Foundations of stochastic optimization on Banach spaces Banach spaces

Derivatives, gradients

A function F : O ⊂ X → Y (O 6= ∅ open and X ,Y Banach spaces) is Gâteaux differentiable if
the limit

dF (x , h) = lim
t→0+

F (x + th)− F (x)
t

∈ Y

exists for all h ∈ X and DF (x) : X 3 h 7→ dF (x , h) ∈ Y is bounded and linear, i.e.,
DF (x) ∈ L(X ,Y ).

It is Fréchet differentiable if it also holds that

‖F (x + h)− F (x)− DF (x)h‖Y = o(‖h‖X ) for ‖h‖X → 0.

Special case for j : X → R, X Hilbert space: the gradient ∇j : X → X is the Riesz representation
of Dj, i.e.,

(∇j(x), v)X = 〈Dj(x), v〉X∗,X ∀v ∈ X .
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Foundations of stochastic optimization on Banach spaces Banach spaces

Separability

A Banach space X is separable if it contains a countable dense subset, meaning there exists
Y = {xi ∈ X | i ∈ N} ⊂ X such that

∀x ∈ X ∀ε > 0∃y ∈ Y : ‖x − y‖X < ε.

Example

C(D̄) with D̄ ⊂ Rd closed and bounded.
(Polynomials with rational coefficients are dense by Weierstraß’s approximation theorem.)
Lp(D), W k,p(D), p ∈ [1,∞), D ⊂ Rd .
X is separable if X∗ is; (norm)-closed subspaces of a separable X are separable.

Not separable: L∞(D), W k,∞(D)!
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Foundations of stochastic optimization on Banach spaces Banach spaces

Strong, weak, weak∗ topologies

Topologies of interest on Banach space (X , ‖·‖) with 〈·, ·〉 := 〈·, ·〉X∗,X :

Strong topology τs (generated on X by norm).
xn strongly converges to x̄ (xn → x̄) if

‖xn − x̄‖ → 0.
Weak topology τw (coarsest one on X so 〈x∗, ·〉 : X → R continuous ∀x∗ ∈ X∗).
xn weakly converges to x̄ (xn ⇀ x̄) if

〈x∗, xn〉 → 〈x∗, x̄〉 ∀x∗ ∈ X∗.
Weak∗ topology τw∗ (coarsest one on X∗ so 〈·, x〉 : X∗ → R continuous ∀x ∈ X).
x∗n weakly∗ converges to x̄∗ (x∗n ⇀

∗ x̄∗) if
〈x∗n , x〉 → 〈x̄

∗
, x〉 ∀x ∈ X .

Hierarchy: τw∗ ⊂ τw ⊂ τs .

Closedness, lower semicontinuity, and compactness need to be qualified w.r.t. topology!

Notation: Cτ ... closure of set C w.r.t. topology τ
τ -lsc ... xn→τ x implies lim infn→∞ j(xn) ≥ j(x).
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Foundations of stochastic optimization on Banach spaces Banach spaces

Notions defined with respect to the dual pairing

Convex conjugate:
j∗(x∗) := supx∈X{〈x

∗, x〉 − j(x)}.
Normal cone:
NC (x0) := {y ∈ X∗ | 〈y , x − x0〉 ≤ 0 ∀x ∈ C}.

Subdifferential:
∂j(x0) := {g ∈ X∗ | j(x) ≥ j(x0) + 〈g, x − x0〉 ∀x ∈ X}.
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Foundations of stochastic optimization on Banach spaces Banach spaces

Compactness

Fact: closed and bounded sets are not compact in infinite dimensions.

Remedy: work with weaker topologies.

Theorem (Banach–Alaoglu)

Closed unit ball of X∗ is weakly∗ compact.

Corollary
Closed unit ball of reflexive X is weakly compact.
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Foundations of stochastic optimization on Banach spaces Banach spaces

Topological minimization theorem

Theorem

Let (X , τ) be a topological space and assume j : X → R ∪ {∞} is τ -lower semicontinuous and
such that levαj is τ -compact. Then, infx∈X j(x) > −∞ and there exists some x̄ ∈ X such that

j(x̄) ≤ j(x) ∀x ∈ X .

Proof. See Theorem 3.2.2 5.

5Attouch, Buttazzo, Michaille. Variational Analysis in Sobolev and BV Spaces (2014).
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Foundations of stochastic optimization on Banach spaces Banach spaces

Choice of topology

Compactness

Continuity

Choice of topology requires give-and-take: if τ1 is stronger than τ2, then

levαj
τ1 τ1-compact ⇒ levαj

τ2 τ2-compact
but

j τ2-lsc ⇒ j τ1-lsc.
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Foundations of stochastic optimization on Banach spaces Banach spaces

Convexity, closedness, and lower semicontinuity

Proposition

(Strongly) closed convex subsets of X are weakly sequentially closed.

Corollary

Any continuous convex functional j : X → R is weakly lower semicontinous (lsc), i.e.,

xn ⇀ x ⇒ lim inf
n→∞

j(xn) ≥ j(x).

Proof. Use j τ -lsc ⇔ epi j τ -closed ⇔ levαj τ -closed (α ∈ R).
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Foundations of stochastic optimization on Banach spaces Banach spaces

Operators

A compact operator A ∈ L(X ,Y ) maps bounded sets to relatively bounded sets and has the
property that

X 3 xn ⇀ x ⇒ Axn → Ax ∈ Y (weak-to-strong continuity).

Example (Compactness via Sobolev embedding theorem)

Let D ⊂ Rd open bounded with Lipschitz boundary 6.
The embedding ι : W k1,p1 (D)→W k2,p2 (D) is continuous and compact if

k1 −
d
p1

> k2 −
d
p2

and k1 > k2.

The embedding ι : W k,p(D)→ C`,α(D̄) is continuous and compact if

k −
d
p
> `+ α.

6meaning boundary can be represented as the graph of a Lipschitz continuous function.
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Foundations of stochastic optimization on Banach spaces Banach spaces

Dual operator

Given an operator A ∈ L(X ,Y ), the dual operator A∗ ∈ L(Y ∗,X∗) is defined by

〈A∗u, v〉X∗,X = 〈u,Av〉Y∗,Y ∀u ∈ Y ∗, ∀v ∈ X .

Theorem (Schauder)

A ∈ L(X ,Y ) is compact ⇔ A∗ ∈ L(Y ∗,X∗) is compact.
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Foundations of stochastic optimization on Banach spaces Vector-valued random variables

Now let’s mix in some stochasticity....

From now on let (Ω,F ,P) denote a complete probability space.

How about measurability in ∞-dimensions?
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Foundations of stochastic optimization on Banach spaces Vector-valued random variables

Vector-valued mappings

Banach space (X , ‖·‖) with 〈·, ·〉 := 〈·, ·〉X∗,X .

A vector-valued mapping x : Ω→ X is said to be
strongly measurable, if there exists a sequence of P-simple functions 7 {xn} such that
‖xn − x‖ → 0 a.s. (P-a.e.)
weakly measurable, if ω 7→ 〈x∗, x(ω)〉 is measurable for all x∗ ∈ X∗.

A mapping x∗ : Ω→ X∗ is said to be
weakly∗ measurable, if ω 7→ 〈x∗(ω), x〉 is measurable for all x ∈ X .

Theorem (Pettis measurability)

x strongly measurable ⇔ x separably-valued and weakly measurable.

7there exist χj ∈ X , Fj ∈ F (j = 1, . . . , N) such that

xn(ω)=
∑N

j=1
χj 1Fj (ω), ω∈Ω.
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Foundations of stochastic optimization on Banach spaces Vector-valued random variables

Bochner space and its dual

The Bochner space LpP(Ω,X) is the set of all (equivalence classes of) strongly measurable
x : Ω→ X having finite norm given by

‖x‖LpP(Ω,X) :=
{

(
∫

Ω‖x(ω)‖pX dP(ω))1/p , 1 ≤ p <∞,
ess supω∈Ω‖x(ω)‖X , p =∞.

The limit of the integrals of P-simple functions xn gives the Bochner integral

E[x ] :=
∫

Ω
x(ω) dP(ω) = lim

n→∞

∫
Ω
xn(ω) dP(ω) ∈ X .

Theorem
Suppose X is reflexive or X∗ is separable. Then for all 1 ≤ p <∞, we have the isometric
isomorphism

(LpP(Ω,X))∗ = LqP(Ω,X∗),
1
p

+
1
q

= 1.

Proof. See, e.g., Section 1.3 in 8

8Hytönen et al. Analysis in Banach spaces (2016).
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Foundations of stochastic optimization on Banach spaces Vector-valued random variables

Implicit measurability theorem

A helpful result for showing the measurability of feasible points:

Theorem (Filippov)

Let F : X × Ω→ Y be a Carathéodory mapping, and suppose C(ω) ⊂ X and D(ω) ⊂ Y are
closed sets that depend measurably on ω. Then the set

E = {ω ∈ Ω | ∃x ∈ C(ω) such that F (x , ω) ∈ D(ω)}

is measurable, and there exists a measurable function x : E → X such that

x(ω) ∈ C(ω) and F (x(ω), ω) ∈ D(ω) ∀ω ∈ E .

Proof. See Section 8.1 9 for the proof and other measurability properties.

9Aubin, Frankowska. Set-valued analysis (1990).
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Foundations of stochastic optimization on Banach spaces Vector-valued random variables

Random linear operators

A random linear operator A : Ω→ L(Y ,W ) is called strongly measurable if for all y ∈ Y ,
ω 7→ A(ω)y is strongly measurable.

Theorem (Hans 10)

Let A : Ω→ L(Y ,W ). Then
A(ω) is invertible a.s. if and only if ran(A∗(ω)) = Y ∗ a.s.
if A(ω) is invertible a.s., then A∗(ω) is invertible and (A∗(ω))−1 = (A−1(ω))∗,
if any of the operators A(ω), A−1(ω), A∗(ω), (A−1(ω))∗ is strongly measurable, then they
all are.

10Hans. Inverse and adjoint transforms of linear bounded random transforms (1957).
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Foundations of stochastic optimization on Banach spaces Vector-valued random variables

Derivative of expectation

Lemma
Let J : X × Ω→ R. Suppose

1 j(v) = E[J(v , ·)] is well-defined and finite-valued for all v ∈ O ⊂ X (O open),
2 Jω := J(·, ω) is a.s. Fréchet differentiable at x ∈ O,
3 there exists a positive random variable C ∈ L1P(Ω) such that for all v ∈ O and almost every
ω ∈ Ω,

‖DJω(v)‖X∗ ≤ C(ω).

Then j is Fréchet differentiable at u and

Dj(x) = E[DJω(x)].

Proof. See, e.g, Lemma C.3 in 11.

11G., Scarinci. Stochastic proximal gradient methods for nonconvex problems in Hilbert spaces (2021).
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Optimality conditions

Today’s agenda

1 Introduction
Challenges and examples of applications in physics-based optimization.

2 Foundations of stochastic optimization on Banach spaces
Basic definitions, most useful tools and results for optimization.

3 Optimality conditions
Constraints on the first and second stage. Adjoint method.

4 Case study
Analysis of example from PDE-constrained optimization under uncertainty.

5 Stochastic approximation
Results in Hilbert spaces, handling of numerical error.
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Optimality conditions

Two-stage problems

Two-stage (“recourse”) problem from stochastic programming (on Banach spaces U,Y ):

min
u∈Uad

J1(u) + E

[
min
y∈Y

J2(u, y , ·)
]

s.t. y ∈ Yad(u, ω) a.s.

Sequence of events:
u︸︷︷︸

first-stage decision
(control)

→ ω︸︷︷︸
random event

→ y︸︷︷︸
second-stage decision

(state)

Interchangeability principle (for J2 normal integrand 12):

min
y(·)∈LpP(Ω,Y )

E[J2(u, y(·), ·)] = E
[

min
y∈Y

J2(u, y , ·)
]
.

12meaning (epi J2)(ω) := {(u, y, α) ∈ U × Y × R | J2(u, y, ω) ≤ α} is closed-valued and measurable.
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Optimality conditions

Recourse structures in stochastic programming

Definition (Recourse structures)

The problem

min
u∈Uad

J1(u) + E

[
min
y∈Y

J2(u, y , ·)
]

s.t. y ∈ Yad(u, ω) a.s.

is said to satisfy the assumption of
complete recourse, if for every u there exists a feasible y(ω) P-a.e. ω;
relatively complete recourse, if for every feasible u there exists a feasible y(ω) P-a.e. ω.
. . . other notions (fixed, simple) not used here...

Relevance: special role in optimality conditions (two-stage problems).
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Optimality conditions

Optimality conditions for constrained problem
Deterministic setting

Theorem
Let Uad ⊂ U be convex and j be Gâteaux differentiable on an open set covering Uad. Then a
necessary condition for ū ∈ Uad to be a solution to minu∈Uad j(u) is

dj(ū)(v − ū) ≥ 0 ∀v ∈ Uad. (2)

In case j is convex, (2) is a sufficient condition for optimality of ū.

Proof. Necessity: For any v ∈ Uad and λ ∈ (0, 1],

v(λ) = ū + λ(v − ū) ∈ Uad.

Since ū is optimal, j(v(λ)) ≥ j(ū), and also
1
λ

(j(v(λ))− j(ū)) ≥ 0.

Taking the limit as λ→ 0, we obtain (2).

Sufficiency: follows from j(v)− j(ū) ≥ dj(ū)(v − ū).
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Optimality conditions

Problems with reducible objective

Framework for equality constraints

min
(u,y)∈Uad×L

p
P(Ω,Y )

J1(u) + E[J2(u, y(·), ·)]

s.t. e(u, y(ω), ω) = 0 a.s.

Control problems are often modeled so that a control-to-state operator S : U × Ω→ Y is
well-defined (e.g., through PDE theory).
Problem can be reduced to single-stage form

min
u∈Uad

{j(u) := J1(u) + E[J2(u,S(u, ·), ·)]}.

For optimality conditions, we need Dj(u) and therefore also the derivative DuS(u, ω)
 apply implicit function theorem.

Notation: J2,ω(u, y(ω)) = J2(u, y(ω), ω), Sω(u) = S(u, ω), eω(u, y(ω)) = e(u, y(ω), ω).
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Optimality conditions

Implicit function theorem

Theorem (IFT)

Let U,Y ,Z be Banach spaces, e : O → Z (open O ⊂ U × Y ) continuously Fréchet differentiable,
(ū, ȳ) ∈ O such that e(ū, ȳ) = 0 and Dy e(ū, ȳ) ∈ L(Y ,Z) has a bounded inverse.

Then there exists an open neighborhood NU(ū)×NY (ȳ) ⊂ O of (ū, ȳ) and a unique continuous
function S : NU(ū)→ Y such that

1 S(ū) = ȳ ,
2 For all u ∈ NU(ū), there exists exactly one y ∈ NY (ȳ) with e(u, y) = 0, namely y = S(u).

Moreover, S : NU(ū)→ Y is continuously Fréchet differentiable with

DS(u) = −Dy e(u, S(u))−1Due(u, S(u)).

If e : O → Z is m-times continuously Fréchet differentiable, then so is S : NU(ū)→ Y .
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Optimality conditions

Adjoint method
Approach for computing derivative of Ĵω(u) := J1(u) + J2,ω(u, Sω(u))

Chain rule + adjoint operator:

〈DĴω(u), h〉U∗,U
= 〈DJ1(u), h〉U∗,U + 〈DuJ2,ω(u,Sω(u)), h〉U∗,U + 〈DyJ2,ω(u,Sω(u)),DSω(u)h〉Y∗,Y
= 〈DJ1(u), h〉U∗,U + 〈DuJ2,ω(u,Sω(u)), h〉U∗,U + 〈(DSω(u))∗DyJ2,ω(u,Sω(u)), h〉U∗,U .

IFT in adjoint form: (DSω(u))∗ = −(Dueω(u,Sω(u)))∗Dy eω(u,Sω(u))−∗.

⇒ DSω(u))∗DyJ2,ω(u,Sω(u)) = −(Dueω(u,Sω(u)))∗ Dy eω(u, Sω(u))−∗DyJ2,ω(u, Sω(u))︸ ︷︷ ︸
=:−pω

.

Derivative:

DĴω(u) = DJ1(u) + DuJ2,ω(u,Sω(u)) + Dueω(u,Sω(u)))∗pω ,
where pω solves the adjoint equation

Dy eω(u, Sω(u))∗pω = −DyJ2,ω(u, Sω(u)).

Alternative approach: sensivity method; see section 1.6 in Hinze, Pinnau, Ulbrich, Ulbrich. Optimization with PDE constraints (2009).
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Optimality conditions

Optimality conditions for reducible objective

Summary: necessary optimality conditions for ū ∈ Uad to be a solution to
min

(u,y)∈Uad×L
p
P(Ω,Y )

J1(u) + E[J2(u, y(·), ·)]

s.t. e(u, y(ω), ω) = 0 a.s.

given by

〈DJ1(ū) + E[DuJ2,ω(ū,Sω(ū)) + Dueω(ū, Sω(ū))∗p̄ω], v − ū〉U∗,U ≥ 0 ∀v ∈ Uad,

where p̄ω solves the adjoint equation

Dy eω(ū, Sω(ū))∗pω = −DyJ2,ω(ū, Sω(ū)).

Note: “DE[Jω] = E[DJω]” needs to be justified above.
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Optimality conditions

Problems without reducible form
Historical development

KKT conditions 13

Choice of function space L∞P (Ω,Rn).

Lagrange multipliers in L1P(Ω,Rn) under
relatively complete recourse condition,
constraint qualification.

 convenient for algorithm building!

13Rockafellar, Wets. Stochastic convex programming: Kuhn-Tucker conditions (1975), Stochastic convex programming: basic duality (1976),
Stochastic convex programming: relatively complete recourse and induced feasibility (1976), Stochastic convex programming: singular multipliers and
extended duality singular multipliers and duality (1976).
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Optimality conditions

Problems without reducible form

Generalized Rockafellar/Wets framework 14

min
(u,y)∈Uad×L

p
P(Ω,Y )

{J (u, y) := J1(u) + E[J2(u, y(·), ·)]}

s.t. e(u, y(ω), ω) = 0 a.s., i(u, y(ω), ω) ≤K 0 a.s.

Existence of Lagrange multipliers under constraint qualification (strict feasibility):

0 ∈ int dom v ,
with value function of perturbed problem

v(φ) := inf
(u,y)∈U×LpP(Ω,Y )

J (u, y) + δFad,φ (u, y),

where Fad,φ := {(u, y) ∈ Uad × LpP(Ω,Y ) | e(u, y(ω), ω) = φe(ω) a.s.,
i(u, y(ω), ω) ≤K φi(ω) a.s.}.

Notation: k ≤K 0 ⇔ −k ∈ K .

14G., Wollner. Optimality conditions for almost sure state constraints (2021). G., Hintermüller. Moreau–Yosida regularization for almost sure state
constraints (2022). G., Henrion. Optimality conditions with chance constraints (2024).
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Optimality conditions

Choice of function spaces depends on CQ

Fact: for p ∈ [1,∞), K ⊂ LpP(Ω) has an empty interior unless Ω is finite dimensional.

Example (L2+(0, 1) = {f ∈ L2(0, 1) | f ≥ 0} has empty interior 15)

For P = Lebesgue measure; Ω = (0, 1):
f ≡ 1 is not an interior point of K = L2+(0, 1):
for

fn(x) =
{
1, [0, 1− 1

n )
−1, [1− 1

n , 1]
,

we have ‖fn − f ‖L2(0,1) → 0 but fn 6∈ K for all n.
⇒ f 6∈ int K .

Consequence: CQ requires using function spaces with sets having nonempty interiors
(L∞P (Ω,X), X sufficiently regular).

15Tröltzsch. Optimal control of partial differential equations (2009).
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Optimality conditions

Yosida-Hewitt-type decomposition on L∞P (Ω, X )∗
For X separable

Theorem (16)

Every v∗ ∈ L∞P (Ω,X)∗ has a unique decomposition

v∗ = v + v◦,

where v is absolutely continuous? and v◦ is singular?? relative to P.

(?) ∃ weakly∗ measurable x∗ : Ω→ X∗ with ‖x∗(·)‖X∗ ∈ L1P(Ω) s.t.

v(x) =

∫
Ω

〈x∗(ω), x(ω)〉X∗,X dP(ω).

(??) There exist {Fn} ⊂ F such that
∀n : x |Fn = 0⇒ 〈λ◦, x〉 = 0.

If X separable and reflexive, absolutely continuous functionals belong to L1P(Ω,X∗).

16Ioffe, Levin. Subdifferentials of convex functions (1972).
Corrected proof in Levin. The Lebesgue decomposition for functionals on the vector-function space L∞X (1974).
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Optimality conditions

Existence of Lagrange multipliers

Convex problems: conjugate duality à la Rockafellar and Wets:
1 Show saddle points λ∗ := (λ∗e , λ∗i ) ∈ (LpP(Ω,W ))∗ × (LpP(Ω,R))∗ of Lagrangian

L̄(u, y , λ∗) = j(u, y) + 〈λ∗e , e(u, y , ·)〉+ 〈λ∗i , i(u, y , ·)〉

exist (assumption: CQ + bounded feasible set or coercive j).
2 Use Yosida–Hewitt decomposition

λ∗e = λae + λ◦e ∈ L∞P (Ω,W )∗, λ∗i = λai + λ◦i ∈ L∞P (Ω,R)∗

and argue that singular multipliers λ◦e , λ◦i vanish (with relatively complete recourse).
Generally not satisfied by optimal control problems with state constraints!

Nonconvex problems: existence of Lagrange multipliers with 17

17Zowe, Kurcyusz. Regularity and stability for the mathematical programming problem in Banach spaces (1979).
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Optimality conditions

Problem with purely singular multipliers

Example (18)
Problem:

min
u≥0
−u s.t. G(u, ω) := u − ω ≤ 0 in Ω := [1, 2]. (3)

Solution u∗ = 1.
Optimality conditions:

〈λ∗, 1(·)〉 = −1, G(u∗, ω) ≤ 0 in Ω, λ
∗ ∈ K−, 〈λ∗,G(u∗, ·)〉 = 0.

Fn := (1, 1 + 1/n) so that P(Fn)→ 0 as n→∞ for Lebesgue measure P.
Since G(u∗, ·) < −1/n on Ω\Fn, we have B1/n(G(u∗, ·)) ⊂ L∞− (Ω).

y ∈ L∞(Ω) with y = 0 on Fn, ρn small enough so that ρny ∈ B1/n(G(u∗, ·)).
Due to complementarity conditions, we have

〈λ∗,G(u∗, ·)± ρny〉 = ±ρn〈λ∗, y〉 ≤ 0 ⇒ 〈λ∗, y〉 = 0 ∀y : y = 0 on Fn

⇒ λ
∗ = λ

◦ 6= 0 (〈λ∗, 1(·)〉 = −1).

Notation: 1(ω) = 1 for all ω ∈ Ω, K− = {k∗ ∈ L∞(Ω)∗ | 〈k∗, k〉 ≤ 0 ∀k ∈ L∞− (Ω)}.

18Bonnans. Convex and stochastic optimization (2019).
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Case study

Today’s agenda

1 Introduction
Challenges and examples of applications in physics-based optimization.

2 Foundations of stochastic optimization on Banach spaces
Basic definitions, most useful tools and results for optimization.

3 Optimality conditions
Constraints on the first and second stage. Adjoint method.

4 Case study
Analysis of example from PDE-constrained optimization under uncertainty.

5 Stochastic approximation
Results in Hilbert spaces, handling of numerical error.
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Case study Model problem

Case study
Optimal control of stationary heat source under uncertainty

min
(u,y)∈Uad×Y

1
2
E
[
‖y − yd‖2U

]
+
µ

2
‖u‖2U

s.t. −∇ · (a(x , ω)∇y(x , ω)) = u(x) + f (x , ω), x ∈ D a.s.,
y(x , ω) = 0, x ∈ ∂D a.s.

(P)

Theoretical questions:
Solvability of random PDE
Solvability of optimization problem
Optimality conditions

Notation: ∇ · (a(x , ω)∇y(x , ω)) =
∑d

i=1
∂
∂xi

(
a(x , ω) ∂y(x,ω)

∂xi

)
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Case study Solvability of random PDE

Case study
Solution to the random PDE

Lemma

Suppose D ⊂ Rd is open and bounded with Lipschitz boundary, u, f (·, ω) ∈ U := L2(D), and
0 < amin < a(x , ω) < amax <∞∀x ∈ D. Then there exists a unique weak solution
y(·, ω) ∈ H1

0(D) to PDE in (P) that satisfies∫
D
a(x , ω)∇y(x , ω) · ∇v(x) dx =

∫
D

(u(x) + f (x , ω))v(x) dx ∀v ∈ H1
0 (D).

Moreover, there exists C1 > 0 such that

‖y(·, ω)‖H1(D) ≤ C1(‖u‖L2(D) + ‖f (·, ω)‖L2(D)). (4)

Moreover, if a ∈ L∞P (Ω, L∞(D)), f ∈ LpP(Ω, L2(D)), then y ∈ Y := LpP(Ω,H1
0(D)).

Proof. Existence/uniqueness by Lax–Milgram lemma. Strong measurability by Filippov’s
theorem.

Notation: H1
0 (D) := C∞c (D)

‖·‖H1(D) and H1(D) = W 1,2(D).
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Case study Solvability of random PDE

Case study
Definition of control-to-state operator

Lemma justifies writing PDE as operator equation in H−1(D) := (H1
0 (D))∗:

A(ω)y(ω) = B(u + f (ω))

with

A(ω) : H1
0 (D)→ H−1(D) A(ω)y := −∇ · (a(·, ω)∇y),

B : L2(D)→ H−1(D) (compact) embedding.

(Parametrized) control-to-state map

S : U︸︷︷︸
:=L2(D)

×Ω→ Y︸︷︷︸
:=H1

0 (D)

, (u, ω) 7→ A−1(ω)B(u + f (ω)).

Linear and continuous in u by (4)!
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Case study Solvability of optimization problem

Case study
Existence of solution

Reduced formulation of problem (P):

min
(u,y)∈Uad×Y

1
2
E
[
‖y − yd‖2U

]
+
µ

2
‖u‖2U

s.t. A(ω)y(ω) = B(u + f (ω))

}
−→ min

u∈Uad

1
2
E
[
‖S(u, ·)− yd‖2U

]
+
µ

2
‖u‖2U .

Proposition

Suppose yd ∈ L2(D), f ∈ L2P(Ω, L2(D)), and ∅ 6= Uad ⊂ L2(D) is closed and convex. Then if Uad
is bounded or µ > 0, there exists a solution to problem (P).
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Case study Solvability of optimization problem

Case study
Existence of solution

Proof.
j(u) := 1

2E
[
‖S(u, ·)− yd‖2U

]
+ µ

2 ‖u‖
2
U bounded below ⇒ j∗ = infu∈Uad j(u) exists.

Take minimizing sequence {un} ⊂ Uad with j(un)→ j∗ (bounded by assumption).

L2(D) is reflexive, so there exists {unk } and ū ∈ Uad such that unk ⇀ u∗.

j continuous since u 7→ 1
2‖S(u, ω)− yd‖2U + µ

2 ‖u‖
2
U continuous a.s. and

S(u, ·) ∈ L2P(Ω,H1
0 (D)).

j is weakly lsc since it is continuous? and convex ⇒ u∗ solves problem (P).
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Case study Solvability of optimization problem

Case study
Optimality conditions (1/2)

Necessary and sufficient conditions in an optimum ū:
〈Dj(ū), v − ū〉U∗,U ≥ 0 ∀v ∈ Uad.

Computation using DuS(u, ω) = DuA−1(ω)B(u + f (ω)) = A−1(ω)B:

〈Dj(ū), v〉U∗,U =
〈
Du

(
1
2
E
[
‖S(ū, ·)− yd‖2U

]
+
µ

2
‖ū‖2U

)
, v
〉

U∗,U

=

∫
Ω

〈
Du

(
1
2
‖S(ū, ω)− yd‖2U

)
, v
〉

U∗,U
dP(ω) +

〈
Du
µ

2
‖ū‖2U , v

〉
U∗,U

=

∫
Ω

〈S(ū, ω)− yd ,DuS(ū, ω)v〉U∗,U dP(ω) + 〈µū, v〉U∗,U

=

∫
Ω

〈DuS(ū, ω)∗(S(ū, ω)− yd ), v〉U∗,U dP(ω) + 〈µū, v〉U∗,U

=

∫
Ω

〈B∗ A−∗(ω)(S(ū, ω)− yd )︸ ︷︷ ︸
=:p̄(ω)

, v〉U∗,U dP(ω) + 〈µū, v〉U∗,U .

 Introduction of adjoint variable p̄(ω) allows for numerical computation.
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Case study Solvability of optimization problem

Case study
Optimality conditions (2/2)

Resulting optimality conditions:

〈E[B∗p̄(·)] + µū, v − ū〉U∗,U ≥ 0 ∀v ∈ Uad,

A∗(ω)p̄(ω) = ȳ(ω)− yd a.s.
A(ω)ȳ(ω) = B(ū − f (ω)) a.s.

Or more explicitly:

〈E[B∗p̄(·)] + µū, v − ū〉U∗,U ≥ 0 ∀v ∈ Uad,

−∇ · (a(x , ω)∇p̄(x , ω)) = ȳ(x , ω)− yd (x) on D × Ω, p̄(x , ω) = 0 on ∂D × Ω,
−∇ · (a(x , ω)∇ȳ(x , ω)) = ū(x)− f (x , ω) on D × Ω, ȳ(x , ω) = 0 on ∂D × Ω.

Gradient ∇j(ū) = E[p̄] + µū ∈ L2(D) (application of Riesz representation theorem).
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Case study Solvability of optimization problem

The model problem with almost sure state constraints (irreducible)

min
(u,y)∈Uad×Y

1
2
E
[
‖y − yd‖2U

]
+
µ

2
‖u‖2U

s.t. −∇ · (a(x , ω)∇y(x , ω)) = u(x) + f (x , ω), x ∈ D a.s.,
y(x , ω) = 0, x ∈ ∂D a.s.,
y(x, ω) ≤ α x ∈ D a.s.

(Ps)

Problem (Ps) fits the framework of a two-stage decision problem.
More forgiving model: chance-constrained setting

P(y(x , ω) ≤ α ∀x ∈ D) ≥ p, p ∈ (0, 1).
Theoretical challenges (optimality conditions) and
numerical methods currently unsatisfactory.
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Approximation

Today’s agenda

1 Introduction
Challenges and examples of applications in physics-based optimization.

2 Foundations of stochastic optimization on Banach spaces
Basic definitions, most useful tools and results for optimization.

3 Optimality conditions
Constraints on the first and second stage. Adjoint method.

4 Case study
Analysis of example from PDE-constrained optimization under uncertainty.

5 Stochastic approximation
Results in Hilbert spaces, handling of numerical error.
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Approximation

Solution of stochastic optimization problems

Strategies for solving stochastic optimization problem

min
u∈U

{
j(u) = E[J(u, ξ)] :=

∫
Ω
J(u, ξ(ω)) dP(ω)

}
:

For small stochastic dimension: quadrature/other discretization for the integral.

Sample average approximation (SAA): take one-time sample {ξ̂1, . . . , ξ̂m} and solve

min
u∈U

1
m

m∑
i=1

J(u, ξ̂i )

using, e.g., deterministic optimization method.
“Stochastic approximation” (SA): dynamically sample while optimizing, e.g., with
stochastic gradient method (SG)

un+1 := un − tnG(un, ξn), G(un, ξn) ≈ ∇j(un).
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Approximation Historical notes

Inspiration for SA: up-and-down method

Dixon and Mood’s “up-and-down” method 19 for finding the root of a function, demonstrated on
an application where the critical height for explosives to detonate is determined experimentally:

19Dixon and Mood. A method for obtaining and analyzing sensitivity data (1948).
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Approximation Historical notes

Stochastic approximation (origins)

Stochastic version by Robbins & Monro 20 for computing the
(unique) root of an equation M(u) = α, for a monotone
function M(u) =

∫∞
−∞ y dH(y |u).

Iterations of the form

un+1 = un − tn(yn − α),

yn . . . random variable with CDF H(y |un).

Kiefer & Wolfowitz 21 procedure for maximizing a regression
function M using central-difference approximations:

un+1 = un − tn
y2n−1 − y2n

cn
.

Convergence in L2 and in probability with proper choice of tn, cn.

20Robbins, Monro. A stochastic approximation method (1951).
21Kiefer, Wolfowitz. Stochastic estimation of the maximum of a regression function (1952).
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Approximation Historical notes

SA in function spaces

Literature:
Goldstein. Minimizing noisy functionals in Hilbert space: an extension of the Kiefer–Wolfowitz
procedure (1988).
Yin and Zhu. On H-valued Robbins–Monro processes (1990).
Culioli and Cohen. Decomposition/coordination algorithms in stochastic optimization (1990).
Barty, Roy, and Strugarek. Hilbert-valued perturbed subgradient algorithms (2007).
Bittar, Carpentier, Chancelier. The stochastic auxiliary problem principle in Banach spaces:
measurability and convergence (2022).

For PDE-constrained optimization under uncertainty:
Martin, Nobile, (Krumscheid, Tsilifis) (2018, 2019, 2021)
G. (Pflug, Scarinci, Wollner) (2019, 2020, 2021, 2023)
Kouri, Surowiec, Staudigl (2023)
Other recent contributions...
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Approximation Problem structures

The projection operator

For C ⊂ U, the projection operator is defined by the point-to-set mapping πC : U ⇒ C ,
u 7→ πC (u) = argminv∈C‖u − v‖.

Projection generally set-valued.

Lemma

If C 6= ∅ is closed and convex, then (1) πC : U → C (single-valued).
(2) πC is non-expansive, i.e., ‖πC (u)− πC (v)‖ ≤ ‖u − v‖ for all u, v.

Proof. Bauschke & Combette, Section 3.2.
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Approximation Problem structures

Problem structures

The structure of the objective function plays a huge role in convergence proofs of iterative
methods.

Finite sum: minu∈Uad
1
m
∑m

i=1 Ji (u)
 Special benefit of finite-sum structure: regular sampling of full gradient possible.

General (finite or infinite sum): minu∈Uad E[J(u, ξ)].

Strongly convex, convex, quasiconvex

Lipschitz gradient

. . .
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Approximation Problem structures

(Strong) convexity for smooth objectives

Lemma
If j : U → R is µ-strongly convex and differentiable, then

j(u)− j(v) ≥ (∇j(v), u − v) +
µ

2
‖u − v‖2 ∀u, v ∈ U. (5)

In the convex and differentiable case, (5) holds with µ = 0.

Proof. Convex case: we have

j(λu + (1− λ)v) ≤ λj(u) + (1− λ)j(v)

⇔
j(v + λ(u − v))− j(v)

λ
≤ j(u)− j(v).

Taking limit as λ→ 0, we obtain (∇j(v), u − v) ≤ j(u)− j(v).

Strongly convex case: first prove that j is strongly convex iff there exists a convex h such that
j(u) = h(u) + µ

2 ‖u‖
2. Then, proceed as above.

Geiersbach (ICSP 2025 Tutorial) 66 / 101 July 26, 2025



Approximation Problem structures

Uniqueness of minimizers in strongly convex case

Lemma

If j is µ-strongly convex and Uad 6= ∅ is closed and convex, then

min
u∈Uad

j(u)

has a unique solution.

Proof. (for differentiable j): optimality of ū ∈ Uad gives (∇j(ū), v − ū) ≥ 0 for all v ∈ Uad.
Then for two optima ū1, ū2, we have

0 = j(ū1)− j(ū2) ≥
µ

2
‖ū1 − ū2‖2.

Geiersbach (ICSP 2025 Tutorial) 67 / 101 July 26, 2025



Approximation Problem structures

L-smooth functions

A function j : U → R is called L-smooth (L > 0) if it is differentiable and the gradient
∇j : U → U is L-Lipschitz, i.e.,

‖∇j(u)−∇j(v)‖ ≤ L‖u − v‖ ∀u, v ∈ U.

The set of L-smooth functions is denoted by C1,1
L (U).

Lemma

If j ∈ C1,1
L (U), then

j(u) ≤ j(v) + (j(v), u − v) +
L
2
‖u − v‖2 ∀u, v ∈ U. (6)

Proof. By the fundamental theorem of calculus,

j(u) = j(v) +
∫ 1

0
(∇j(v + t(u − v)), u − v) dt

= j(v) + (∇j(v), u − v) +
∫ 1

0
(∇j(v + t(u − v))−∇j(v), u − v) dt.

Use Cauchy–Schwarz combined with Lipschitz condition and integrate.
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Approximation Problem structures

L-smoothness and convexity

Lemma
If j : U → R is convex and L-smooth, then it is also cocoercive, i.e.,

1
L
‖∇j(u)−∇j(v)‖2 ≤ (∇j(v)−∇j(u), v − u). (7)

Proof. Using convexity and L-smoothness,

j(u)− j(v)± j(z) ≤ (∇j(u), u − z) + (∇j(v), z − v) +
L
2
‖z − v‖2. (?)

Minimizing right-hand side w.r.t. z, we get z = v − 1
L (∇j(v)−∇j(u)). Substituting z into (?),

we can verify
j(u)− j(v) ≤ (∇j(u), u − v)−

1
2L
‖∇j(v)−∇j(u)‖2. (??)

Claim follows by applying (??) twice (exchanging roles of u and v).
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Approximation Quasigradient (biased) variants

Projected stochastic gradient (PSG) method

PSG method for solving minu∈Uad{j(u) := E[J(u, ξ)]}:

un+1 = πUad

(
un − tnG(un, ξn)

)
, G(un, ξn) ≈ ∇j(un)

Notes:
Robbins–Monro step-sizes:

tn ≥ 0,
∞∑
n=1

tn =∞,
∞∑
n=1

t2n <∞.

 j(un+1) > j(un) possible: technically not a descent method!
ξn is randomly chosen and independent of previous realization ξ1, . . . , ξn−1.

With bias (“quasigradient”):

G(un, ξn) = ∇j(un) + rn︸︷︷︸
bias

+ wn︸︷︷︸
mean 0

(∞-dimensional case: discretization needed).

Example

Single realization: ∇uJ(un, ξn)

Minibatch: 1
mn

∑mn
i=1∇uJ(un, ξn,i )

Minibatch/single with additive bias:
1
mn

∑mn
i=1∇uJ(un, ξn,i ) + rn
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Approximation Quasigradient (biased) variants

Types of probabilistic convergence

Feature: the i.i.d. sequence ξn ∼ P, n ∈ N, induces a discrete stochastic process {un} →
probabilistic convergence statements.

Figure: Relationship between convergence
in Lp , almost sure (a.s.), probability (p),
and distribution (d).

Typical for SA: proofs of L2 convergence and
almost sure convergence.

Convex case: convergence of {un} to set
of minimizers, convergence of {j(un)}.

Nonconvex case: convergence of
stationarity measure, convergence of
{j(un)}.
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Approximation Quasigradient (biased) variants

Nonconvergence with constant step-sizes

Example

Let J(u, ξ) := (u + ξ)2 ⇒ ∇uJ(u, ξ) = 2(u + ξ) and ξ = ±1 (with equal probability). The
minimizer of

E[J(u, ξ)] = 1
2 ((u + 1)2 + (u − 1)2)

is ū = 0.

Suppose tn = α > 0 is constant.

We prove: |un| < ε⇒ |un+1| > ε for ε < α
1−α .

Case ξ = −1 : un+1 = un − α∇uJ(un,−1)
≥ −ε(1− 2α) + 2α > ε.

Case ξ = 1 : Analogous argument. Thus un 6→ 0.

Example explains why Armijo backtracking fails; variance from stochastic gradient needs to
be damped! Two basic strategies: increase batch sizes and/or use decreasing step-sizes.

Python script: https://nbviewer.org/url/caroline.geiersbach.com/PSGD.ipynb
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Approximation Quasigradient (biased) variants

Assumptions for convergence

1 Constraint set: Uad 6= ∅ is closed and convex.
2 Convexity, smoothness, boundedness of expectation.
3 Measurability: {un} and {rn} are Fn-measurable. 22

4 Bias decays fast enough:
∑∞

n=1 tn‖r
n‖L∞P (Ω) <∞ and supn‖rn‖L∞P (Ω) <∞ are satisfied.

5 Growth condition: There exist M1,M2 ≥ 0 such that E[‖G(u, ξ)‖2] ≤ M1 + M2‖u‖2 for all
u ∈ Uad.

22Measurability can be argued if G and j are continuous and U is separable.
Geiersbach (ICSP 2025 Tutorial) 73 / 101 July 26, 2025



Approximation Quasigradient (biased) variants

Almost sure convergence for convex problems

Theorem (Convergence for convex j)

Under assumptions,
1 {j(un)} converges a.s. to the minimum,
2 {un} weakly converges a.s. to some minimizer,
3 Strongly convex case: {un} converges strongly a.s. to the unique minimizer.

un converges “weakly a.s.” to ū if P({ω ∈ Ω | limn→∞〈v , un〉 = 〈v , ū〉 ∀v ∈ U}) = 1.
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Approximation Quasigradient (biased) variants

Notes about proof technique

The natural filtration is denoted by Fn = σ({ξ1, . . . , ξn−1}), n ∈ N. 23 The conditional
expectation E[u|Fn] of a random vector u is a random vector such that∫

A
E[u|Fn](ω) dP(ω) =

∫
A
u(ω) dP(ω) ∀A ∈ Fn.

Thus, if u is Fn-measurable, we have E[u|Fn] = u a.s. Also, since Ω ∈ Fn, E[E[u|Fn]] = E[u]
(law of total expectation).

Lemma (Robbins–Siegmund 24)

Suppose {Fn} is an increasing sequence of σ-algebras and vn, an, bn, cn are Fn-measurable
nonnegative random variables. If

E[vn+1|Fn] ≤ vn(1 + an) + bn − cn,
∞∑
n=1

an <∞,
∞∑
n=1

bn <∞,

then {vn} converges and
∑∞

n=1 cn <∞ a.s.

23
σ({ξ1, . . . , ξn}) is the smallest σ-algebra such that ξi is measurable for all i .

24Robbins, Siegmund. A convergence theorem for non negative almost supermartingales and some applications (1971).
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Approximation Quasigradient (biased) variants

Efficiency estimates - strongly convex case

Rules for bias and step-sizes for µ-strongly convex objective:

‖rn‖L∞P (Ω) ≤
κ

n + ν
, tn =

θ

n + ν
,

where θ > 1/(2µ), and ν ≥ 2θκ/(2µθ − 1)− 1, and κ > 0.

Efficiency estimates:

E[‖un − ū‖] ≤
√

ρ

n + ν
, where ρ = ρ(ν, µ, θ, ‖u1 − ū‖, κ,M1,M2).

If additionally j ∈ C1,1
L and ∇j(ū) = 0, then

E[j(un)− j(ū)] ≤
Lρ

2(n + ν)
.

 Same order of convergence as for bounded Uad, unbiased case!
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Approximation Quasigradient (biased) variants

Poor convergence in convex case

Example (25)

Poor choice of step size: Consider j(u) = 1
10u

2, Uad = [−1, 1], G(u, ξ) = ∇j(u). Suppose
that we choose θ = 1 (here we have µ = 1

5 ). Then,

un =
n−1∏
s=1

(
1−

1
5s

)
= exp

{
−

n−1∑
s=1

ln
(
1 +

1
5s − 1

)}
> exp

{
−

n−1∑
s=1

1
5s − 1

}

> exp

{
−

(
0.25 +

∫ n−1

1

1
5t − 1

dt

)}
> 0.8n−1/5

.

At iterate n = 109, the iterated solution is greater than 0.015 (the solution is ū = 0).
Convex (not strongly convex) case: Consider j(u) = u4, Uad = [−1, 1], G(u, ξ) = ∇j(u),
tn = θ

n , 0 < u1 ≤ 1
6
√
θ
. Then,

un ≥
u1√

1 + 32θ(u1)2(1 + ln(n + 1))
.

Remedy: iterate averaging 26

25Nemirovski, Juditsky, Lan, Shapiro. Robust stochastic approximation approach to stochastic programming (2009).
26Polyak and Juditsky. Acceleration of stochastic approximation by averaging (1992).
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Approximation Quasigradient (biased) variants

Efficiency estimates with iterate averaging

Iterate averaging: run PSG with larger steps; compute the running average of the iterates:

ũNi =
N∑
n=i

γnun, γn := tn/(
N∑
`=i

t`).

Rules for bias and step-sizes (Uad bounded):

N∑
n=i

‖rn‖L∞P (Ω)
√
n

∝ 1, tn =
θDad√
Mn

, θ > 0,Dad := max
u∈Uad

‖u1 − u‖, and M = M1.

Efficiency estimate for i = dαNe for some α ∈ (0, 1):

E[j(ũNi )− j(u)] ≤
ρ
√
N

ρ = ρ(θ,M,Dad, ‖rn‖L∞P (Ω)).

Note: for unbounded Uad, possible to show that convergence is nearly O(1/
√
N).
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Approximation Quasigradient (biased) variants

Finite element method (FEM) in 2D

Weak formulation of model problem:

Find y = y(ξ) ∈ V := H1
0 (D) such that∫

D
a(x , ξ)∇y(x) · ∇v(x) dx =

∫
D
u(x)v(x) dx ∀v ∈ V .

Finite element approximation:

Triangulate D into elements Th = {Ti}.
Choose basis {ψj} ⊂ Vh ⊂ V .
Stiffness matrix:

Ak` =
∑
T∈Th

∫
T

∑
i,j

aij∂iψk∂jψ` dx .

Load vector: li =
∫
D uψi dx .

Solve: AY = l .
Triangulation Th showing
triangles (Ti )i=1,...,50 defined
by edges and nodes.
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Approximation Quasigradient (biased) variants

Discretization

State/adjoint equations - piecewise linear finite elements:

Yh := {v ∈ H1(D) | v |T ∈ P1(T ) for all T ∈ Th},

Y 0
h := Yh ∩ H1

0 (D).

Controls - discretization using piecewise constant finite elements:

Uh := {u ∈ L2(D) | v |T ∈ P0(T ) for all T ∈ Th}, Uad,h = Uh ∩ Uad.

Figure: Example uh ∈ Uad,h (left) and yh ∈ Y 0
h (right).

Geiersbach (ICSP 2025 Tutorial) 80 / 101 July 26, 2025



Approximation Quasigradient (biased) variants

Discretization of problem and stochastic gradient

The (spatially) discretized version of the model problem:

min
u∈Uad,h

1
2
E
[
‖yh − yd‖2L2(D)

]
+
µ

2
‖uh‖2L2(D)

s.t.
∫
D
Iha(ξ)∇y · ∇v dx = 〈uh, vh〉L2(D) ∀vh ∈ Y 0

h .

(P′h)

Ih . . . interpolation into element wise constant or linear finite elements.

Stochastic gradient with bias (numerical error):

∇uJh(uh, ξ) = µuh + Phph(ξ),

where ph(ξ) ∈ Y 0
h solves the PDE∫

D
Iha(ξ)∇ph(ξ) · ∇vh dx = (yh(ξ)− yd , vh)L2(D) ∀vh ∈ Y 0

h .

Ph : U → Uh . . . L2-projection, defined for v ∈ L2(D) by Ph(v)
∣∣
T

= 1
|T |

∫
T v dx .
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Approximation Quasigradient (biased) variants

Error in stochastic gradient

Error in the stochastic gradient can be split as follows:

∇j(uh) = µunh + Phpnh(ξn)︸ ︷︷ ︸
=:∇uJh(unh ,ξ

n)

+E[pn(ξ)]− pn(ξn)︸ ︷︷ ︸
=:wn

+ pn(ξn)− Phpnh(ξn)︸ ︷︷ ︸
=:rn

Sketch of estimate for Kn = ‖pn(ξ)− Phpnh (ξ)‖L∞P (Ξ,U), U = L2(D):

‖pn(ξ)− Phpnh (ξ)‖U ≤ ‖Phpnh (ξ)− Phpn(ξ)‖U + ‖pn(ξ)− Phpn(ξ)‖U
≤ ‖pnh (ξ)− pn(ξ)‖U + ch‖∇pn(ξ)‖U (Projection + Error for Ph)

≤ ‖pnh (ξ)− pn(ξ)‖U + ch
(
‖yd‖U + ‖uh‖U

)
(Stability of p(ξ) and y(ξ))

≤ chmin(2s,t)
(
‖yd‖U + ‖uh‖U

)
+ ch
(
‖yd‖U + ‖uh‖U

)
(Aubin-Nitsche trick 27)

⇒ Bound for bias: Kn ≤ chmin(2s,t,1).

27For a(ξ) ∈ Ct (D̄), ∃s0 ∈ (0, t] : for any 0 ≤ s < s0, any u ∈ Hs0−1(D), it holds that ‖y(ξ)‖H1+s (D) ≤ Cs‖u‖Hs−1(D).
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Approximation Quasigradient (biased) variants

Mesh refinement rule
For the strongly convex case, we get with the requirement that Kn ≤ K

n+ν the rule

tn =
θ

n + ν
, hn ≤

( c
n + ν

)1/min(2s,t,1)
. (8)

For the convex case, we get with the requirement
∑N

n=i
Kn√
n ∝ 1 the rule

tn =
θDad√
Mn

, hn ≤
(

c
√
n +
√
n − 1

)1/min(2s,t,1)

. (9)

PSG with mesh refinement for (P′h)

Initialization: Select h1 > 0, u1h ∈ Uad,h
for n = 1, 2, . . . do

if h = hn is too large per (8) or (9) then
Refine mesh Thn until h = hn is small enough.

end if
Given new sample ξn, calculate (ynh , p

n
h) by solving corresponding state, adjoint equations.

un+1
h := πUad,h (unh − tn(λunh + Phpnh)).

end for
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Approximation Quasigradient (biased) variants

Obtained solutions

Figure: “Smooth field” (left) with control in strongly convex setting (middle) and convex setting
(right).

Figure: “Piecewise constant field” (left) with control in strongly convex setting (middle) and
convex setting (right).
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Approximation Quasigradient (biased) variants

Convergence behavior: strongly convex case
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h − ū||U

1.45n−0.50

50 100 150 200 250 300

0.00316

0.01

0.0316

Iterations n

E
rr

or
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Figure: Smooth random field (top row) and piecewise constant random field (bottom row).
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Approximation Quasigradient (biased) variants

Convergence behavior: convex case
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Figure: Smooth random field (top row) and piecewise constant random field (bottom row).

→ Reduced convergence rate for piecewise constant a!
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Approximation Quasigradient (biased) variants

Convergence behavior: convex case

.... Expected convergence rate can be achieved by choosing a more aggressive mesh
refinement strategy. Here, we chose min(2s, t, 1) = 0.5.
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Figure: Piecewise constant random field using variable step-size rule.

Geiersbach (ICSP 2025 Tutorial) 87 / 101 July 26, 2025



Approximation Beyond convexity

Nonconvex objective

Motivation: in many applications, j is nonconvex (e.g., if u 7→ S(u, ω) is nonlinear). What can
be said about convergence of SA for nonconvex problems?

Without convexity, one can only expect to
converge to stationary points.
 Need to ensure iterates {un} are bounded
along with some smoothness assumption on ∇j.

Minimal assumption: objective has L-Lipschitz gradients, so that we have inequality

j(u) ≤ j(v) + 〈∇j(v), u − v〉+
L
2
‖u − v‖2 ∀u, v ∈ U. (10)
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Approximation Beyond convexity

Assumptions for convergence

SG method for solving unconstrained minu∈U{j(u) := E[J(u, ξ)]}:

un+1 = un − tnG(un, ξn), with RM rule: tn ≥ 0,
∞∑
n=1

tn =∞,
∞∑
n=1

t2n <∞.

Assumptions - SG with bias: G(un, ξn) = ∇j(un) + rn + wn

Iterates are bounded 28.
j ∈ C1,1

L is bounded below.

Measurability: {un} and {rn} are Fn-measurable.

Bias decays fast enough: rn = E[G(un, ξn)|Fn]−∇j(un) is Fn-measurable for all n and∑∞
n=1 tn‖r

n‖L∞P (Ω) <∞ and supn‖rn‖L∞P (Ω) <∞ are satisfied.

Growth condition: There exists a function M : U → [0,∞), that is bounded on bounded
sets, such that E[‖G(u, ξ)‖2] ≤ M(u).

28Boundedness of iterates can be shown under additional growth conditions on the gradient.
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Approximation Beyond convexity

Almost sure convergence result

Theorem (Convergence for j ∈ C1,1
L )

1 The sequence {j(un)} converges a.s. & lim infn→∞‖∇j(un)‖ = 0 a.s.
2 If F (u) := ‖∇j(u)‖2 satisfies F ∈ C1,1

LF
(U), then limn→∞∇j(un) = 0 a.s.

Note: No convergence statement for iterates.
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Proof of first claim

Since j ∈ C1,1
L and gn = ∇j(un) + rn + wn,

j(un+1)
(10)
≤ j(un)− tn(∇j(un), gn) +

Lt2n
2
‖gn‖2

Monotonicity of
E[·|Fn ]
=⇒ E[j(un+1)|Fn] ≤ j(un)− tn(∇j(un),

=∇j(un)+rn︷ ︸︸ ︷
E[gn|Fn] ) +

Lt2n
2

E[‖gn‖2|Fn].

Apply Robbins–Siegmund lemma.
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Proof of second claim

Since F ∈ C1,1
LF

,

|E[F (un+1)︸ ︷︷ ︸
=:vn+1

−F (un)|Fn]| ≤

∣∣∣∣−tn(∇F (un),E[gn|Fn]) +
LF t2n
2

E[‖gn‖2|Fn]

∣∣∣∣
≤ | − tn(2(∇2j(un))∗∇j(un),∇j(un) + rn)|+

LFM(un)t2n
2

≤ 2Ltn‖∇j(un)‖2 + 2LM1tn‖rn‖L∞P (Ω) +
LFM(un)t2n

2
.

Result follows with following theorem.

Lemma (Quasimartingale convergence theorem)

Suppose {Fn} is an increasing sequence of σ-algebras and vn is a Fn-measurable random
variable. If

sup
n

E[max{0,−v}] <∞ and
∞∑
n=1

E
[
|E[vn+1 − vn|Fn]|

]
<∞,

then {vn} converges a.s. to a P-integrable random variable v∞.
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Approximation Beyond convexity

Convergence rates?

In the nonconvex case, it’s possible to show that if tn is decreasing and∑∞
j=1

tj∑j
k=1

tk
=∞ 29 then, almost surely,

min
t=1,...,n

‖∇j(ut)‖2 = o
(

1∑n
j=1 tj

)
.

Poor scaling of the step size in the
nonconvex setting → convergence may be
very slow...

Figure: Heat death of the universe?

Scaling of
tn = θ/ns

obtained by intuition and offline tuning.

29Satisfied for e.g. tn = θ/ns with θ > 0 and s ∈ (0.5, 1].
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Model problem

Optimal control of semilinear elliptic equation under uncertainty

min
u∈L2(D)

1
2
E[‖y(ξ)− yd‖2L2(D)] +

µ

2
‖u‖2L2(D)

s.t. −∇ · (a(x , ξ)∇y(x)) + y(x) + y5(x) = u(x), x ∈ D a.s.,
∂y
∂n

= 0, x ∈ ∂D a.s.

Nonlinear control-to-state map u 7→ S(u, ω).
Good performance with step size tn = θ/n with θ = 2/µ informed by strongly convex
objective.

Figure: Computed optimal control (left) and state (right) for µ = 1.
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Convergence behavior
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Figure: Convergence for µ = 1 (left), µ = 0.1 (middle), µ = 0.01 (right).

Performance outperforms theory  nonconvexity is rather harmless for this problem.
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Evidence of mesh independence

Idea: run algorithm on different meshes and compare # of iterations needed until the
(estimated!) residual r̂N reaches a tolerance tol.

Hope: # of iterations stays stable → independent of the discretization.

h # triangles objective function f̂N # iterations N until r̂N ≤ tol
7.1e−2 800 4.160e−2 191
4.7e−2 1800 4.157e−2 295
3.5e−2 3200 4.157e−2 233
2.8e−2 5000 4.156e−2 257
2.4e−2 7200 4.156e−2 271
2.0e−2 9800 4.155e−2 251

Mesh independence test for SA + FEM method showing evidence of mesh independence.
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Example for numerics - with state constraints

Modification of problem (P) to include state constraint “y(·, ξ) ≤ α”: Moreau–Yosida
regularized problem is

min
u∈Uad

1
2E[‖y − yd‖2L2(D)] + µ

2 ‖u‖
2
L2(D) + γ

2E[‖max(0, y − α)‖2L2(D)]

s.t. −∇ · (a(x , ξ)∇y(x , ξ)) = u(x), on D × Ξ,
y(x , ξ) = 0, on ∂D × Ξ.

With J(u, ξ) = 1
2‖y − yd‖2L2(D) + µ

2 ‖u‖
2
L2(D) + γ

2 ‖max(0, y − α)‖2L2(D), stochastic gradient can
be computed by:

DuJ(u, ξ)[h] = 〈y − yd ,A−1(ξ)h〉+ 〈µu, h〉+ 〈γmax(0, y − α),A−1(ξ)h〉
= 〈A−∗(ξ)(y − yd ) + γmax(0, y − α))︸ ︷︷ ︸

=:p(ξ)

+µu

︸ ︷︷ ︸
=:Gγ (u,ξ)

, h〉.
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Approximation Beyond convexity

Path-following PSG method

Initialization: Select γ1, h1 > 0 , u1h ∈ Uad,h.
for m = 1, 2, . . . do

umn
h ← Run PSG with mesh refinement with gradient Gγmh (unh , ξ

n) for mn steps.
Increase γm, choose h = h1, project un+1

h onto mesh h1.
end for

Figure: Plot of stationarity measure ‖Gγn (un, ξn)‖2L2 (left); infeasibility measure
‖max(0, yn − α)‖2L2 (middle); sequence of γn (right).

Notes:
Uad chosen large enough so that ‖Gγn (un, ξn)‖2L2(D) is a stationarity measure.

Variance reduction (increased batch sizes) may improve performance for larger γn.
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Conclusion

Main takeaways

Introduction to stochastic optimization on Banach spaces.

Optimality conditions in reducible form and challenges in irreducible form.

Case study from PDE-constrained optimization under uncertainty.

Results in Hilbert-valued stochastic approximation
It is possible to show almost sure convergence in Hilbert spaces even with (decreasing)
numerical error, unbounded Uad, and/or nonconvex functions.

SA applicable to more involved problems (nonconvexity, nonsmoothness) but further
development is needed!

 Many open questions for further research: optimality conditions, models with risk
measures, higher-order and accelerated methods, line search methods for nonconvex
problems, more robust methods for state constraints, convergence of SA for nonconvex
problems in Banach spaces . . .
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